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Abstract

The development of wireless technologies for implantable
devices can contribute to improvements in the quality and
efficacy of healthcare. Leadless Cardiac Pacemaker (LCP)
and Wireless Capsule Endoscopy (WCE) are two state-of-
the-art implantable devices that have a high potential to
enable medical professionals to gather timely clinical infor-
mation, increase the survival rates of the patients, relieve
the pain caused by surgery, and provide other benefits. De-
signers of a wireless communication system for the LCP and
WCE face many crucial challenges, such as the operating fre-
quency band selection, wave propagation inside the human
body, path loss models, high-efficiency and miniaturized
implantable antennas, the influence of human tissues on the
implantable antenna, and high gain on-body antennas.

The focus of this research was the development of stable, low-
power-consumption, high-efficiency transmission links for
the communication systems of LCP and WCE by building
path loss models and designing novel in-body and on-body
antennas. Path loss models based on practical application
scenarios of LCP and WCE were built in this dissertation,
and miniaturized, and highly radiation-efficient implantable
antennas with new design concepts were proposed. In com-
parison to existing path loss models and antennas, the built
path loss models excluded the effects of antenna types in all
potential narrow frequency bands, whereas a comprehensive
equation is proposed to simplify the process of building
path loss models in the 2.4 GHz Industrial, Scientific, and
Medical (ISM) band. Several new design concepts are pro-



posed for designing the extremely miniaturized antennas
working inside the lossy medium. The radiation efficiencies
of the proposed antennas were verified by the numerical
simulation and in-vitro and in-vivo measurements, and were
much higher than the state-of-the-art implantable antennas.
Meanwhile, the wave impedance, radiation performance, and
near-field boundary of the antenna inside the lossy medium
are systematically investigated.

In general, the path loss models were expected to be used
to evaluate and improve the transmission links in all the
communication scenarios. Experimental measurements and
full-wave numerical simulations were used to build the path
loss models for LCP applications, and simplified Cole-Cole
models for calculating the relative permittivities and con-
ductivities of human tissues in different frequency bands
were proposed to reduce the complexity of the calculation in
full-wave simulations. In-body to on-body path loss models
in the Ultra-Wideband (UWB) were also built, to achieve
high data rate transmission for the WCE application, and
the influences of omni-directional and directional on-body
antennas on the path loss models were studied.

Highly radiation-efficient implantable antennas are key com-
ponents of the communication system of LCP, which pro-
vides reliable and high-efficiency transmission links. Besides
the fact that the miniaturized size of the proposed anten-
nas saves space for the battery in the limited cavity of the
pacemaker capsule, it can also extend the lifetime of the
pacemaker capsule and avoid the risk of surgery for the
patients. In this dissertation, we proposed several new de-
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sign concepts and verified the radiation performance of our
proposed antenna with the simulated and measured trans-
mission coefficient in homogeneous tissue, an anatomical
human model, and a living animal. For the theoretical study,
the wave impedance, radiation performance, and boundary
between the near-field and far-field of antennas inside the
lossy medium are systematically investigated, through which
new criterion defining the near-field and far-field boundary
and a modified Friis equation for antennas inside the lossy
medium were proposed.

For improving the in-body to on-body transmission data
rates of WCE applications, compact antipodal Vivaldi anten-
nas working on the UWB were proposed. Without enlarging
the size of the antenna, the operating bandwidth was en-
larged and the realized gains were improved. To further
increase the gain of the on-body antennas, based on the
proposed antipodal Vivaldi antenna, two antenna arrays
were designed with vertical and horizontal polarization, re-
spectively.
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Chapter 1

Introduction

Research for Wireless Body Area Networks (WBAN) has
become popular in recent years, due to its high potential for
improving health, providing adjuvant therapy, and extend-
ing patients’ lives, based on the physiological data collected
from different electrically invasive or non-invasive devices
inside, or on the human body [1–3]. Many different ap-
plications have been proposed and implemented with the
assistance of WBAN. Two very specific applications that are
areas of cutting-edge medical device research are cardiology
and gastroenterology, and two devices were investigated in
this study: leadless cardiac pacemaker (LCP) and wireless
capsule endoscopy (WCE). This research mainly focused
on improving the transmission links of the LCP and WCE
communication systems, by building path loss models and
designing novel in-body and on-body antennas.
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1.1 Motivation and Objectives

1.1.1 Research Motivation

LCP and WCE devices, that are implanted in the human
body or swallowed, can monitor the status of different hu-
man organs. Each implanted node sends information to
the off-body stations and provides treatment to the dys-
functional organ, which can increase patient survival rates
and improve health outcomes with easy and fast diagnosis
and treatment [4–7]. Therefore, the design of reliable, low
power, and highly efficient communication links for these
applications is essential.

Characterizing the wave propagation in different commu-
nication scenarios of LCP and WCE is an inevitable step
to improve the transmission links in the communication
systems of implanted devices [8–13]. Scattering and absorp-
tion phenomena in the human body, caused by frequency-
dependent dielectric properties and the complex structure of
human organs, significantly affect the propagation of radio
signals through human tissue [14,15]. The development of
mitigation techniques for the high path loss of in-body to
in-body, in-body to on-body and in-body to off-body propa-
gation calls for accurate path models and antenna design
optimization [16].

To maintain reliable and highly efficient communication
among implant devices, especially the in-body to in-body
communication of LCP, high radiation efficiency is an essen-
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tial characteristic of the implantable antennas. Additionally,
for fitting the antenna inside the size-limited implantable
medical devices and keeping the Specific Absorption Rate
(SAR) as low as possible for patient safety, the in-body
antennas should be heavily miniaturized and have high ra-
diation efficiency [17]. Also, the reflection coefficient of
in-body antennas should be less sensitive to the detuning
effect caused by the differences of electrical properties of
human body tissues [18]. For deeply implanted leadless
pacemaker capsules, which have to operate inside the heart
for 8 to 10 years, longevity is one of the most important
requirements.

For the WCE, on-body antennas attached to the skin of the
chest and abdomen are utilized to receive signals transmit-
ted from the capsule inside the human body [19–23]. Thus,
on-body antennas should be designed with the effect on
human tissue taken into consideration. Ultra-wide band
(UWB) frequency has high potential as a frequency band
for providing high-speed transmission of in-body to on-body
communication, so that the real-time images captured by
the endoscope capsule can be obtained. However, the large
lossy characteristic of the human body during high frequency
transmission reduces the possibility of employing an ultra-
wide-band antenna in the wireless endoscope capsule [19].
To compensate for the high loss caused by human tissue,
the on-body antenna should have high radiation efficiency
and gain [22].
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1.1.2 Objectives

This work focuses on how to develop stable, low-power
consumption, and high-efficiency transmission links for the
communication systems of LCP and WCE. To reach the
goal, accurate path loss models and high radiation efficiency
implantable and on-body antennas will be built and de-
signed. Firstly, the path loss models will be built for all
the communication scenarios of LCP and WCE, based on
numerical simulation and experimental measurement. The
novel implantable antennas with miniaturized volume and
high radiation efficiency will then be designed, fabricated,
and tested at in vitro and in vivo environments. After that,
the theoretical analysis and the numerical simulation will
be implemented to discuss the methods for evaluating the
radiation efficiency of antennas working inside the lossy
medium. The wave impedance, radiation performance, and
near-field boundary of the antenna inside the lossy medium
will be systematically investigated. Finally, to improve the
in-body to on-body communication performance of WCE,
compact and high gain on-body antennas and arrays will be
designed. These objectives are converted into the following
measurable tasks:

1) Developing the low power-consumption and highly
efficient transmission links for the communication sys-
tems of LCP and WCE.

2) Building the in-body to in-body, in-body to subcuta-
neous and in-body to off-body path loss models for
LCP applications in the narrow frequency bands.

3) Building the in-body to on-body path loss modes for
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WCE applications in the ultra-wide band.

4) Designing the miniaturized, highly radiation-efficient
implantable antennas for the LCP application and
verifying the performance of the designed antenna by
in vitro and in vivo measurement.

5) Systematically studying the wave impedance, radi-
ation performance, and near-field boundary of the
antenna inside the lossy medium.

6) Proposing the methods of evaluating the radiation
performance of antennas implanted in the loss medium.

7) Designing compact and high-gain on-body antennas
and arrays for the WCE application.

1.2 Background

1.2.1 Review of Leadless Cardiac Pacemaker
(LCP)

Cardiac pacemakers, as the most important and popular
implantable devices, can help to detect the phenomenon
of cardiac dysfunction and regulate the heart to normal
synchronization through connecting the different deeply im-
planted pacemaker capsules with the subcutaneous control
device. For traditional pacemakers, the communication con-
nection and synchronization are created by connecting the
several deeply implanted pacemaker capsules to a subcu-
taneous control unit through wire leads. After decades of
pacing technological advancements, leads are usually seen
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as the traditional system’s weak spot, which might result
in breakage, infection, venous blockage, and other complica-
tions [24–26].

Hardware Monitor

Patches

distal electronic
battery

Proximal

Hardware Monitor

Patches

distal electronic
battery

Proximal

Figure 1.1: Implanted leadless capsule pacemaker [Figure
provided by Microport CRM, Paris]

The leadless pacemaker includes a wireless connection in
lieu of the lead, which minimizes the risk of infection and
is less intrusive for patients. As an alternative to transve-
nous pacemakers, it has been shown to be both safe and
effective in both short- and medium-term follow-up [27–30].
As shown in Fig. 1.1, the LCP consists of distal, electronic,
battery and proximal. For the prime monitoring of the
heart, at least two leadless pacemaker capsules are required
to be deeply implanted in the right atrium and right ventri-
cle respectively and wirelessly synchronize with each other.
They will directly communicate with the off-body device or
be relayed via the subcutaneously implanted node. There
are two possible potential communication modalities: one
is that all the capsules work independently as master nodes
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having full privileges to communicate with each other and
external devices, and another scenario is that an exclusive
master capsule acts as the intermediate node for communi-
cating with other slave capsules and external devices.

For the communication technology of LCP, highly reliable
and energy-efficient communication links are the most im-
portant requirements [31], which implies that the communi-
cation system should have a low bit error rate (BER) and
high radiation efficiency. Longevity is another important
characteristic of a leadless pacemaker that operates inside
the heart for 8 to 10 years, thus, the LCP is assumed to have
a low-power consumption transceiver and high-radiation ef-
ficiency implantable antennas. Since the required communi-
cation data rate is no more than 4.8 kbits [32], narrow-band
technology is sufficient. To improve the communication
performance of LCP applications, path loss models between
different capsules should be built. They play a vital role
in providing references for the design of communication
circuits, evaluating the power consumption of capsules and
optimizing the battery’s lifetime. Designing antennas with
a miniaturized volume to save more space for the battery
within the limited capacity of the pacemaker capsule is
also significant. As we know, the radiation efficiency of
the antenna relates closely to its size; therefore, for deeply
implanted devices, miniaturized, high-radiation-efficiency
antennas are beneficial.

7



Chapter 1 Introduction

1.2.2 Review of Wireless Capsule Endoscopy
(WCE)

In gastroenterology, Wireless Capsule Endoscopy (WCE),
which first appeared in 2000 [33], is a notable invention in
the biomedical industry. The ingestible capsule may cap-
ture images along its journey through the gastrointestinal
(GI) tract after being swallowed. Therefore, it is capable of
transmitting real-time biological data from inside the body
to external medical tools, advancing noninvasive diagnostics.
In the last few years, WCE technology has become popular,
replacing the traditional wired endoscopy which may cause
complications for medical and sugerical patients [34–36].
Furthermore, the small capsule can reach areas such as the
small intestine, where the traditional wired endoscopy can-
not detect.

1 2 3

4

4

5 6 6 7 81 2 3

4

4

5 6 6 7 8

Figure 1.2: PillCam WCE, consisting of (1) Optical dome;
(2) Lens holder; (3) Lens; (4) White LEDs; (5)
CMOS imager; (6) Battery; (7) Transmitter; (8)
Antenna [37].

Fig. 1.2 depicts a PillCam small bowel capsule endoscopy,
which consists of a CMOS imager, LEDs, a battery, a trans-
mitter, and an antenna. The CMOS imager, with the assis-
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tance of LEDs, captures the pictures when the capsule is
going through the stomach and intestines, and then, using
the transmitter and implantable antenna, the pictures are
transmitted to the off-body or on-body station. Fig. 1.3
depicts another kind of wireless capsule that is also swallow-
able. It has an optical sensor for the immediate detection
of acute bleeding in the esophagus, stomach, and small in-
testine. This capsule can detect acute bleeding when going
through the digestive tract and send real-time information
to an outside receiving station, whose working principles
are similar to those of WCE.

(a) (b)(a) (b)

Figure 1.3: HemoPill: Swallowable capsule with optical sen-
sor for the immediate detection of acute bleeding
in the esophagus, stomach, and small intestine
[38].

The non-invasive examination in a WCE scenario is shown
in Fig. 1.4. There is an in-body wireless capsule moving
continuously inside the GI tract of the human stomach,
wirelessly transmitting the examination data to an on-body
antenna. And the received data, pictures or video, can be
transmitted to the phone via Bluetooth or WIFI and then
remotely shared with the doctor. Normally, the swallowed
capsule will stay inside the patient’s digestive tract for 8 to
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10 hours. Doctors can receive the pictures captured by the
WCE even when the patient stays at home.

WCE

On-body 

Antenna

Phone

Internet

Terminal of Doctor

WCE

On-body 

Antenna

Phone

Internet

Terminal of Doctor

Figure 1.4: Diagram of WCE communication.

There are still many challenges to improving the perfor-
mance of WCE. Due to the high data rate requirement
of this technology, commercial WCE currently operates at
narrow frequency bands like the Medical Implant Commu-
nication Service (MICS) band and 2.4 GHz ISM band, and
the bandwidth restrictions are insufficient for the require-
ments of high-resolution images for the medically meticu-
lous examination of the gastrointestinal (GI) tract [39–41].
Consequently, UWB is theoretically the greatest feasible
frequency band, since it not only gives high-quality pictures
but also allows low output power technology, which is a
major issue for wireless implanted devices, according to
human protection regulatory authorities [42]. It is critical to
accurately understand the propagation mechanisms between
the in-body and on-body antennas in order to achieve high
data rate transmission on UWB. Thus, for the purposes
of this study, we built the in-body to on-body path loss
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models for the WCE applications and designed the high-gain
on-body antenna and antenna array to improve the in-body
to on-body transmission.

1.2.3 Potential Frequency Bands

Based on our application scenarios, the LCP and the WCE,
the potential frequency bands can be classified into two
categories: Ultrawide Band (UWB, 3.1-10 GHz) and Nar-
row Band (NB) such as Medical Implanted Communication
Service (MICS) band (402-405 MHz), Wireless Medical
Telemetry Service (WMTS) band (608-614 MHz) and In-
dustrial Scientific and Medical (ISM) bands (867-869 MHz,
2.4-2.5 GHz).

The European Telecommunication Standards Institute (ETSI)
has standardized the MICS band, and two types of applica-
tion fields are listed: one is for communication between an
implanted device and an external base station, and the other
is for communication between various implanted devices in-
side the same human body. The maximum power limit is
set to -16 dBm equivalent radiated power (ERP) to reduce
the risk of interfering with other electric devices in the same
band. This means that the maximum field-strength in any
direction should be equal to, or lower than, what a resonant
dipole would give in its maximum direction at the same
distance, fed by a signal of -16 dBm. [43].

The MICS band’s low power attenuation within the human

11



Chapter 1 Introduction

body is its key benefit over the UWB and other higher fre-
quency bands. This makes it potentially useful for in-body
communications [44]. The MICS band is extensively ex-
ploited by implanted devices for communication with other
implanted devices and off-body stations. The MICS band’s
low power attenuation allows it to propagate further than
UWB, but its restricted operating frequency range limits
data throughput. The design of the communication sys-
tem requires miniaturizing the antenna to fit within the
implanted device since MICS band antennas are huge.

For narrow band applications, implanted devices may also
use the WMTS band, 868 MHz ISM band, and 2.4 GHz
ISM band. The 2.4 GHz ISM band, in particular, is now
used by a variety of services, including WiFi and Bluetooth,
both of which are used by portable smart devices. Because
of the widespread use of WiFi and Bluetooth, transmit-
ters that are based on these protocols are fairly simple to
implement. Furthermore, the low energy consumption of
bluethooth is excellent for implanted devices whose battery
life is lengthy. However, this band does not provide any
protection against interference from other communication
services that operate on the same frequency, which is one of
its major drawbacks [44].

The Federal Communication Commission (FCC) defines
UWB as the frequencies range from 3.1 GHz to 10.6 GHz
with maximum ERP of 74.13 nW/MHz, thus the maximum
allowable power of 0.556 mW in the full UWB. European
standards provide the low band of UWB between 3.1 GHz
and 4.8 GHz and the high band between 6.0 GHz and 10.2
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GHz [45]. Due to its lower power attenuation than the
high band, the low band is always used for body area com-
munications. UWB offers great promise for high-data-rate
applications at short ranges or low-data-rate applications
on attenuated channels. UWB further offers antenna minia-
turization and decreased power consumption. The primary
disadvantage of UWB is its substantial power attenuation
inside the human body, which limits communication dis-
tance.

1.3 Literature Review

1.3.1 Path Loss Models

Building the path loss models for WCE and LCP can pro-
vide references for the design of communication circuits,
evaluating the power consumption of capsule and optimiz-
ing the battery’s lifetime. As we discussed in Section 1.2.3,
the operating frequency bands of LCP and WCE are nar-
row band and ultrawide band, respectively. Thus, the path
loss models of these two applications can be classified as
narrowband and wideband models.

1.3.1.1 Narrowband Path Loss Models

For the LCP application, the data transmission rate is low,
so the narrow frequency band is sufficient and results in
lower energy consumption compared with the wideband.
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The research of path loss models for the narrow frequency
band for in-body communication is summarized as follows.
In [46], by modeling and measuring the propagation be-
tween implanted devices, channel models of IEEE Standard
802.15.6 in the Body Area Network (BAN) were improved.
In order to study RF propagation from medical implants
within a human body and establish a statistical path loss
model for medical implant communication systems, an im-
mersive visualization environment was developed in [47].
In [48], the author described the experimental measurement
and electromagnetic modeling of propagation from 418 MHz
and 916.5 MHz sources placed in the human vagina. An on-
body propagation channel for 4.5 GHz was measured with a
specific activity of a body in [49]. Different body processes’
effects on fading were observed and statistically modeled.
In [50], for a 2360 MHz on-body to on-body channel, the
impact of gender and body shape was shown. The findings
demonstrated that small-scale fading that conforms to the
Rice distribution is caused by involuntary movements as
well as breathing. In [51], the propagation channel between
two 2.45 GHz half-wavelength dipoles near a human body
was discussed. In a multipath scenario, propagation mea-
surements were conducted on actual persons. The signal
propagation around the surface of the body at 915 MHz
and 2.45 GHz (ISM bands) was examined in [52]. Wearable
wireless low-cost commercial modules and low-profile annu-
lar ring slot antennas were used as transceivers to measure
the on-body path loss models in [53].

In [54], the belt-to-head and belt-to-wrist propagation mod-
els were derived using monopole, loop, dipole, and inverted
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F-antennas. The authors observed that short-term fading
is Rician and log-term is lognormal. Biotelemetry and in-
body radio propagation at 402 MHz, 868 MHz, and 2.4
GHz are examined numerically and experimentally in [55].
The findings suggest that 402 MHz is excellent for wireless
implants and that the ISM band 2.4 GHz may be utilized
for body-worn medical sensors to transmit in-body data to
nearby locations. In [56], the author measured the on-body
propagation around the body surface and in-body propaga-
tion through tissue at 403 MHz and 2.45 GHz and found
that in-body path loss is more than that of on-body. In [57],
the radiation properties of wireless sensors placed on various
human organs and various inhomogeneous digital phantoms
at 403 MHz and 868 MHz were investigated by numerical
simulations based on FDTD. The study revealed that the
location significantly affects wireless sensor performance,
with body curvature potentially enhancing antenna directiv-
ity. Taking into account human body curvature, including
human models with organs properties in [58], the path loss
models of in-body to on-body and in-body to in-body at 402
MHz, 868 MHz, and 2.4 GHz are investigated by numerical
simulation based on FDTD and phantom measurement.

1.3.1.2 Wideband Path Loss Models

Wideband path loss models may be used in WCE applica-
tions as a guide for the design of transverse, in-body, and
on-body antennas to achieve high data rate communica-
tion. Many studies of wideband path loss channel models
have been conducted. In [59], the propagation of UWB
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signals through human tissues in the 0.1-1 GHz and 1-6
GHz frequency bands was simulated and studied based on
the numerical anatomical human body. A statistical model
for UWB propagation channels inside the human chest in
the 1-6 GHz frequency range by including the frequency-
dependent attenuation is extended in [60]. Based on FDTD
method, the wireless link between the inside and outside
of a human chest was studied with the disc dipole anten-
nas [61]. In [62], a spatial diversity reception technique
was employed to improve the communication performance
between in-body and on-body devices at UWB. To capture
the effects of blood circulation, respiration, and temperature
gradients of a living subject, in [63], the author performed
UWB channel measurements within 1-6 GHz on two living
porcine subjects. In [64], radio propagation around the body
at 3-10 GHz was examined using parallel FDTD. Simulation
and measurement were in a typical hospital environment.
Based on in-vivo measurements made in the abdominal cav-
ity, the in-body to on-body and in-body to off-body path
loss models within the range of 3.1 GHz to 8.5 GHz were
retrieved in [65]. Additionally, the correction factors to
change phantom-based results to more accurate path loss
values are offered by contrasting them with in-vivo-based
measurements. In [66], the arm motions and background
office noise are taken into account when developing the
log-normal path loss models based on measurements of elec-
tromagnetic waves passing close to the body. The frequency
dependency of the scattering component has also been ex-
amined together with the frequency-dependent path loss
model for ultrawideband implant applications in [67].
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1.3.2 In-Body Antenna Design

The design of antennas working inside the human tissue
with high permittivity and conductivity is very challenging.
Because of the electrical characteristics of human tissue, the
design concepts for in-body antennas differ from those for
antennas in free space. It has been found that it is not only
the high permittivity of human tissue that gives the shorting
fact to the antennas but also the high conductivity. In par-
ticular, high water-content tissues such as the heart, blood,
muscles, etc., distort the field distribution of the in-body
antenna. Thus, the evaluation methods for the antenna
performance in free space cannot be directly applied to the
in-body antenna. For example, the radiation pattern and
efficiency of the antenna inside the lossy medium need to
be redefined [18,68–73]. Insulation is also one of the most
important factors which should be considered in the design
of in-body antenna because the thickness and electric prop-
erty of it influence the near field distribution of implantable
antenna [74–76]. And the radiation pattern of an implanted
antenna cannot be defined as it is in free space because it
also depends on the dimensions and electric properties of
surrounding media, not only the antenna itself [68].

1.3.2.1 Narrow Band In-Body Antenna

The antennas in the leadless capsules of LCP application
are deeply implanted inside the heart, which is a tissue con-
sisting of high water-content tissue with large permittivity
and conductivity. Since the antenna only necessitates a
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low data rate, its operating frequency can be confined to a
narrow band. Compared with the antenna working in free
space, the special working environment of in-body antenna
changes the design principle significantly.

Many studies have been conducted. In [77], an implantable
planar inverted-F antenna (PIFA) was designed and an-
alyzed inside the muscle tissue.The antenna’s path and
ground plane were designed with a curvature, creating a
three-dimensional structure that aligns with the capsule’s
curvature. A compact stacked planar antenna working on
the MICS band was proposed and fabricated in [78]. In
addition, the antenna’s resonance frequency and radiation
performance were examined inside a head model. In [79], to
miniaturize the size of the antenna, a kind of high permittiv-
ity substrate, with 30 of relative permittivity, was employed.
The antenna was placed in a simplified biological tissue
model consisting of bone, muscle, fat, and skin; then, the 1g-
SAR distribution, resonant frequency, and radiation pattern
were analyzed. The meandered PIFA structure was utilized
to design the implanted RFID tag antenna operating at
868 MHz (ISM band) [80]. The wave propagation between
the off-body reader and the implanted tag was analyzed
in free space and in a scattered environment. The authors
of [81] proposed an implanted H-shaped cavity slot antenna
for short-range wireless communication. The antenna was
designed to operate on the ISM band (2.45 GHz) and in-
vestigated by using finite-difference time-domain (FDTD)
calculations. In [82], the multilayer helical antenna was ap-
plied to miniaturize the size of the antenna to a diameter of
12 mm for 2.4 GHz ISM band ingestible capsule endoscope
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systems. A folded structure [83] was employed to design an
implant compact folded antenna of 20.3 mm × 0.8 mm ×
0.8 mm operating at one of the UHF bands (951-956 MHz).

In [84], an electrically coupled loop antenna was proposed
which was dual of PIFA. Further, the proposed antenna was
utilized for implanted devices inside the human body as a
good candidate for miniaturized and high radiation efficiency
antenna in [85]. A dual-band scalp-implantable antenna is
proposed in [86], in which the antenna works at 915 MHz
and 2450 MHz and has a small volume (8 mm × 6 mm × 0.5
mm = 24 mm3) with a slotless and a vialess ground plane.
In [87], a coplanar waveguide (CPW) fed patch antenna is
proposed and works at 2.4-2.5 GHz with the circular polar-
ization inside the skin and muscle. The main radiation part
of the antenna is a meandered central strip, and the asym-
metric square slots are utilized to generate phase conditions
for right-hand circularly polarized radiation. In [88], a triple
band implantable antenna is proposed, which operates at
902-928 MHz, 2400-2483.5 MHz, and 1824-1980 MHz. The
size of the proposed antenna is 21 mm3 (7 mm × 6 mm
× 0.5 mm) and consists of a meandering radiating patch,
an open-end ground slot, and a shorting pin between the
ground plane and radiating patch. A dual-band (MICS and
ISM bands) implantable complementary split-ring (CSR)
antenna is proposed in [89], and the antenna is fabricated
on a grounded RO3010 and with 14 mm × 14 mm × 1.27
mm in size. In [90], a circularly polarized implantable an-
tenna operating at 902-928 MHz is presented and the size
of the antenna is pi × (6 mm)2 × 1.27 mm. The structure
of the antenna is an extended ring with meandered lines.
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In [91], a small circular polarization path antenna with the
capacitive loading was designed, and the capacitive loading
was used to reduce the size to 10 mm × 10 mm × 1.27 mm
working at 2.4-2.48 GHz. A dual band antenna (402 MHz
MICS band and 2.45 GHz ISM band) was designed with dif-
ferential feeding and 22 mm × 23 mm × 1.24 mm in size [92].

1.3.2.2 Wideband In-Body Antenna

Wideband implanted antennas are required for the WCE
application to provide high data rate connectivity and real-
time, high-quality picture transmission. In [93], by using
dielectric loading technology, a capsule-shaped slot antenna
was developed with a larger matching bandwidth and a
smaller overall dimension. The proposed design has an oper-
ational bandwidth of 3.5 GHz to 4.5 GHz. It was suggested
to use a conformal trapezoid strip excited broadband hemi-
spherical dielectric resonator antenna (DRA) in [94]. The
authors exploited the UWB transmission loss characteristics
in human tissue, and analyzed the performance of in-body
to on-body communication. One of the most compelling
advantages of a UWB implanted antenna is its potential
to enhance the transmission data rate. In [95], the authors
used impulse radio (IR) in the near-field to achieve a 750
Mbps data rate based on an uniplanar printed antenna.
In order to increase the transmission data rate in [96], a
UWB transmitter diversity antenna was developed. Based
on phantom and in-vivo tests, a projected outage rate of
0.01 and a range of 15 cm in a typical body environment
may theoretically be accomplished with a 7 dB increase
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in signal-to-noise power ratio. In [97], a dual-wideband
implantable antenna was proposed, whose measured -10
dB bandwidths are 56% (278 MHz) for the MedRadio and
33% (870 MHz) for the ISM bands, respectively. In [98], a
CPW-fed, wideband dual-ring slot antenna was propsoed
with the bandwidth of 57% (2-3.5 GHz). By introducing a
metamaterial (MTM) array with very large epsilon behav-
iorAnd, a 3 dB gain enhancement was achieved. In [99], four
flexible, polarization-diverse UWB antennas are proposed
for an implantable neural recording system. The bandwidth
of the proposed antennas is from 2 GHz to 11 GHz and
there are two different dimensions for the single- and dual-
polarization antennas: 12 mm × 12 mm and 10 mm × 9
mm, respectively. In [100], a flexible antenna operating from
3.1 GHz to 10.6 GHz with an overall size of 17 mm × 14 mm
× 1.07 mm was proposed and the antenna is compatible for
use with off-body, on-body as well as in-body applications.

1.3.3 On-Body Antenna Design

When it comes to receiving data transmitted from implanted
devices, such as those used in WCE applications, wearable
on-body antennas are an absolute necessity. In [101], for 3.1
GHz to 10.6 GHz IR-UWB systems, a new small microstrip-
fed printed monopole antenna was introduced and studied.
The transmission scenarios in which many antennas were
positioned on the body were evaluated and compared, and
the findings revealed great path gain. A dual-band copla-
nar patch antenna was integrated with an electromagnetic
band gap substrate in order to improve the antenna gain
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while also lowering the amount of radiation that entered
the body, as described in [102]. The antenna worked in the
2.45 GHz and 5 GHz bands and was constructed using reg-
ular clothing. By integrating the antenna with a band gap
array, the radiation penetrating the body was significantly
reduced by nearly 10 dB, while simultaneously achieving
an increase in gain of 3 dB. For medical diagnosis in the
0.5 GHz to 2 GHz range, a compact double-layer Bowtie
antenna based on a folded construction with meandering
microstrip lines at the bottom was designed [103]. This
antenna demonstrated a significant potential for usage in
the medical diagnosis of stroke, breast cancer, and water
accumulation detection in human bodies thanks to features
including a very small size, very low operational frequency,
and a high front-to-back ratio. In [104], The authors evalu-
ated and reviewed a variety of UWB on-body slotted path
antennas, and they suggested an improved model with a slot
loaded with circles and fed by a fork-shaped microstrip line.
In order to increase the communication range of implantable
medical devices, a dual-band patch antenna was proposed
for integration into on-body repeater devices. These devices
were designed to receive and retransmit weak signals from
implantable medical devices (MedRadio band, 401-406 MHz)
to monitoring/control devices placed at a greater distance
(ISM 2400-2480 MHz) [105]. In [106], for on-body applica-
tions, a one-wavelength loop antenna fed by an inductively
linked loop was developed. The antenna was matched at
880-940 MHz and printed on a PVC substrate. In order
to meet the specifications of RFID applications, the radia-
tion and matching performance of the developed on-body
antenna were simulated on the human body. A surface
wave antenna, consisting of an artificial ground plane ex-

22



Chapter 1 Introduction

cited by a center-fed circular patch, was presented [107].
The input-match frequency band was around 2.45 GHz and
the radiation pattern was monopole-like. In [108], based
on a novel half-diamond-shaped HMSIW architecture, a
dual-band wearable antenna comprised of textile materials
and brass eyelets was described. There was extremely high
agreement between models and experiments for impedance
matching and radiation performance in free space in the 2.4
GHz and 5.8 GHz ISM bands.

1.4 Overview of the Dissertation

The Dissertation is organized into six chapters. The follow-
ing is how the dissertattion is organized:

Chapter 1 introduces the motivation and objectives of
our work and provides a brief background on two biomedi-
cal implantable devices: the WCE and LCP. Moreover, a
literature review of previous research on path loss channel
models, in-body antennas and on-body antennas is provided.

Chapter 2 describes the theoretical analysis of the electro-
magnetic properties of human body tissues and the char-
acteristics of wave propagation inside human body tissues.
The in-body to in-body, in-body to subcutaneous and in-
body to off-body path loss models for the LCP applications
are built. It also shows the in-body to on-body channel
models for the WCE application.
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Chapter 3 proposes novel miniaturized loop antennas for
implantable applications. The design principle is discussed,
and the effects of the thickness of the insulation layer and
different human tissues are investigated. The proposed
antennas are also integrated with the models of leadless
pacemakers to study the influence of the pacemakers on
the proposed antenna. The performance of the antenna is
verified with full-wave simulation in the antomical model,
in-vitro phantom measurement and in-vivo animal experi-
ment.

Chapter 4 systematically investigates the wave impedance,
radiation performance, and near-field boundary of the an-
tenna inside the lossy medium. The wave impedance of
electric and magnetic dipoles inside the lossy medium is
discussed, and the influence of the thickness of the insulation
layer on the half-wave dipole inside the lossy medium is also
studied. The modified concepts for evaluating the radiation
performance of antennas inside the lossy medium are pro-
posed, and the methods to evaluate the radiation efficiency
of antennas inside the lossy medium are provided. The
equation for evaluating the link budget between antennas
inside the lossy medium is summarized and verified, based
on the simulation and measured results of our proposed
antennas.

Chapter 5 provides the designed compact antipodal Vi-
valdi antenna, and antipodal Vivaldi antenna arrays, all of
which are working at the low part of UWB and are utilized
as on-body antennas for the WCE application.
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Chapter 6 summarizes and concludes the dissertation as
well as suggesting future work.
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