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Abstract

An ever growing demand for high data rate broadband services requires either an increase
in the system bandwidth or an improvement in the spectral efficiency. Since the mobile
bandwidth is an expensive and scarce resource, it seems likely that a high frequency reuse
is employed in the future cellular networks to increase their spectral efficiency. Such a setup
by its very nature is interference limited. Most of this interference originates from outside
the cell, and requires strategic base station cooperation schemes for its cancellation.

This thesis investigates different multiuser detection schemes for uplink cellular systems
to mitigate interference between adjacent cells through exchange of information between
the base stations. As such, it can be considered an extension/improvement over the exist-
ing SINR enhancing schemes employed in 3GPP standards, which combines signals from
multiple cells during soft /softer handover. The investigated cooperative detection schemes
are further classified into centralized and decentralized approaches, depending on whether
the processing is done jointly at a single central point or locally at each base station in
a distributed manner. The objective is to identify different receive algorithms that give
the best complexity-performance tradeoff while keeping a low backhaul traffic between the
base stations. Additionally, user positions within a cellular system need to be effectively
modelled, so that their effect on the receiver performance can be investigated.

The information available at each base station has to be quantized before being ex-
changed. This introduces additional noise into the system and degrades the receiver per-
formance for a given SNR. Since the centralized and distributed strategies exchange the
received information in different forms, i.e., baseband signals or Log-Likelihood ratios, the
quantization strategy and information exchange mechanism is also different. In our pre-
sented work, we try to identify the best quantization strategy for the received baseband
signal exchanged during centralized processing so as to minimize the performance loss for
a given number of quantization bits. Similarly, we also investigate efficient quantization
strategies for reliability values exchanged between the base stations during distributed
processing.

The strategic approaches for multiuser detection are well justified by information the-
oretic analysis, suggesting MIMO-like gains in the system capacity. The achievable rate
per user significantly exceeds that of a conventional cellular system. We conclude that the
system becomes fairer as not only the difference between the ergodic and outage capac-
ities of a single user become smaller, but also the difference in performance between the
users positioned at different locations within a cell is reduced. We also observe that, al-
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though, the performance of centralized processing schemes is superior to distributed ones
it normally requires higher backhaul traffic. We therefore suggest using it in conjunction
with distributed detection schemes through a scheduler in order to reach any required
performance-backhaul tradeoff.

Another main conclusion to be drawn from this work is that the optimal quantization for
the reliability values can be closely approached by minimizing the mean square quantization
error in the soft bit domain. Contrary to that, performing complex optimal quantization
of baseband signals does not give us any significant advantage, and uniform quantization
with clipping appears to be adequate.



Zusammenfassung

In den letzten Jahrzehnten erfuhr die drahtlose Kommunikation einen rasanten Aufschwung.
Einerseits verfiinffachte sich die Anzahl der Mobilfunk-Teilnehmer und andererseits wuchs
der Bedarf an drahtlosen, breitbandigen Datenanbindungen exponentiell an. Der Erfolg
zukiinftiger drahtloser Kommunikationssysteme wird entscheidend davon abhiingen, in-
wieweit die Bediirfnisse und Anforderungen der Nutzer erfiillt und iibertroffen werden.
Viele zukiinftige Anwendungen beinhalten hochratige Datendienste. Die Bereitstellung
dieser Dienste erfordert entweder die Vergroerung der Systembandbreite oder die Verbesser-
ung der spektralen Effizienz. Jedoch stellt die Bandbreite in der mobilen Kommunikation
eine sehr knappe und folglich kostenintensive Ressource dar. Deshalb zeichnet sich der
Trend ab, in zukiinftigen Mobilfunknetzen eine hohere Frequenzwiederholung einzusetzen
und somit die spektrale Effizienz zu steigern. Jedoch ist die Leistungsfahigkeit solcher
Konzepte inharent durch die Interferenz begrenzt, deren dominanter Anteil durch benach-
barte Zellen hervorgerufen wird. Deshalb werden Kooperationsstrategien zwischen den Ba-
sisstationen benotigt, um die Interferenz zwischen Zellen zu senken, um eine bis zu 8-fach
hohere spektrale Effizienz zu erzielen als in der zweiten und dritten Mobilfunkgeneration.

In dieser Arbeit werden verschiedene Mehrnutzer-Detektionsverfahren fiir den Uplink
in zellularen Mobilfunksystemen untersucht, welche die Interferenz zwischen benachbarten
Mobilfunkzellen mithilfe des Informationsaustausches zwischen den Basisstationen kom-
pensiert. Solche Verfahren werden nachfolgend in zentralisierte und dezentralisierte Ver-
fahren, abhangig davon, ob die Verarbeitung von einer zentralen Einheit oder verteilt in den
beteiligten Basisstationen ausgefiihrt wird, unterteilt. Zielsetzung ist es, verschiedene Emp-
fangsalgorithmen zu bestimmen, welche den besten Kompromiss zwischen Komplexitéat
und Leistungsfahigkeit erzielen und gleichzeitig den zusatzlichen Informationsaustausch
zwischen den Basisstationen gering halten. Zudem miissen die Nutzerpositionen im zellu-
laren Mobilfunknetz effektiv modelliert werden, um den Einfluss der Nutzer auf die Leis-
tungsfahigkeit der Empfanger untersuchen zu kénnen.

Die Information, welche jede Basisstation aus ihren Uplink-Verbindungen gewinnt, kann
nur quantisiert mit anderen Basisstationen ausgetauscht werden. Aufgrund dieser Quan-
tisierung wird zusatzliches Rauschen in das System eingefiigt und verschlechtert somit
die Leistungsfahigkeit des Empfangers bei einem bestimmten Signal-zu-Rausch Verhalt-
nis. Da zentralisierte sowie auch verteilte Ansatze die Empfangsinformation auf unter-
schiedliche Weise austauschen konnen, z.B. Basisband Signale oder Log-Likelihood Verhalt-
nisse, existieren auch unterschiedliche Anséatze fiir die Quantisierung und den Informa-



Zusammenfassung v

tionsaustausch. Diese Arbeit zielt darauf ab, fiir den zentralisierten Ansatz die besten
Quantisierungsstrategie fiir den Austausch der empfangenen Basisbandsignale zu bestim-
men, welche die geringste Verschlechterung der Leistungsfahigkeit bei einer gegebenen An-
zahl von Quantisierungsbits erzielt. Ebenso werden fiir dezentralisierte Verfahren effiziente
Quantisierungsstrategien fiir den Austausch der Zuverlassigkeitsinformation zwischen den
Basisstationen untersucht.

Die entwickelten Mehrnutzer-Detektionsstrategien werden mit informationstheoretis-
chen Analysen untermauert und bieten eine MIMO &hnliche Verbesserung der Systemka-
pazitit. Die verfiigbare Datenrate pro Nutzer tibersteigt jene in konventionellen Mobil-
funksystemen signifikant. Zusammenfassend kann gesagt werden, dass die Fairness in dem
System erhoht wird, da sich nicht nur die Differenz zwischen ergodischer Kapazitit und der
Kapazitat mit Outage eines einzelnen Nutzers verringert, sondern auch die Unterschiede
in der Performance zwischen an unterschiedlichen Positionen innerhalb einer Zelle befind-
lichen Nutzern reduziert werden Es zeigt sich, dass zentralisierte Verarbeitungsansétze ein-
erseits eine bessere Performance erzielen als die verteilten Verarbeitungsansatze. Anderer-
seits verursachen sie eine hohere Verkehrslast auf Verbindungsnetzen (Backhaul). Deshalb
wird ein zentralisierter Verarbeitungsansatz mit verteilten Detektionsschemata, kontrol-
liert von einem Steueralgorithmus, vorgeschlagen, um einen beliebigen Abtausch zwischen
Performance und Backhaul-Traffic zu erzielen.

Eine andere Hauptschlussfolgerung dieser Arbeit ist, dass die optimale Quantisierung
der Zuverlassigkeitswerte fast erreicht werden kann, indem der mittlere quadratische Quan-
tisierungsfehler im Soft Bit-Wertebereich minimiert wird. Dem entgegen bietet die kom-
plexe optimale Quantisierung der Basisbandsignale keinen signifikanten Vorteil, sodass die
lineare Quantisierung mit Wertebeschrankung die adaquate Losung darstellt.
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Chapter 1

Introduction

“cooperation - noun:
~ an act or instance of working or acting together for a common purpose or benefit; joint
action”

1.1 Motivation

The mobile and wireless communication has seen a tremendous growth over the recent
years. Not only the global number of mobile users has increased almost five fold in the last
ten years, but also the demand for broadband wireless data access has grown exponentially.
The success of future mobile and wireless communications systems depends on meeting
and exceeding the needs and requirements of consumers. Many future applications will
involve data oriented broadband services with high data rates, and therefore require a
higher bandwidth or spectral efficiency to satisfy the user expectations. Since the mobile
bandwidth is expensive and a scarce resource, it seems likely that this will demand an
increase in spectral efficiency over those provided by the second and third generation
systems, perhaps 6-8 times larger than HSPA.

In their benchmark paper on information theoretic capacity of multi-receiver net-
works [HW93], Hanly and Whiting concluded that the cost of partitioning the frequency
spectrum is more than the cost of interference when it is not done. A higher frequency reuse
is therefore proposed to improve the spectral efficiency, resulting in the interference from
co-channel users outside the cells to dominate, thereby forming a single most important
factor limiting the system performance. This interference coming from the adjacent cells is
commonly known as other cell interference (OCI). OCI has been treated in [And05], where
it was suggested that advanced receiver and transmitter techniques can be employed to-
gether with strategic approaches to cancel the increased interference across the cell borders.
The strategic approaches to handling OCI require co-operative signal processing between
the base stations (BSs) through mutual exchange of the received information between
them. The signal propagation across the borders can now be visualized as an additional
source of diversity, and can contribute to the desired signal gain in both the uplink and the
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downlink. However, in this thesis we only consider the uplink scenarios for investigating
the OCI mitigation through BS cooperation. Given that the mobile terminals (MT) are
low cost, low power independent entities, and are not expected to cooperate to perform
transmit or receive beamforming, they are assumed to be as simple as possible with most
of the complex processing of a cellular system moved to the BSs.

The cooperative strategies in the uplink are further classified into centralized and de-
centralized approaches. In the centralized approaches, the BSs perform only the frontend
RF processing and send the quantized baseband signals to a single central unit (CU) for
joint detection and decoding. This idea of a super receiver in a cellular network, having
all the information at the cooperative BSs available to it, was first conceived by Wyner
in [Wyn94|. Assuming negligible information loss from the receive antenna to the CU,
the radio interface can be considered similar to that for MIMO, but with different path-
losses for each link. The information theoretic results for point-to-point MIMO channels
are therefore also valid, suggesting impressive gains in channel capacity and spectrum
efficiency as shown in [SW97, RP02a, MKF06]. The second approach of decentralized co-
operative strategies perform the baseband processing of the desired signals locally at each
BS, while exchanging processed reliability information between them [AEH, SWSWO04].
The same potential capacity gains as in the centralized approaches are predicted, as long
as the entire information content of the received signal is exchanged between the BSs.
Fig. 1.1 compares a conventional cellular system with a cooperative centralized processing
architecture.

Although the idea of cooperative signal processing has been around for some time now,
it is only in the last few years that it has stirred up a greater interest in the scientific
community. Among them are works by groups in Rostock and Kaiserslautern (Sklavos,
Weber) [SWBC, WWAQ7], USA (Andrews, Dai, Paulraj) [And05,ZD04, RP02a], Australia
(Grant) [GHEMO04], Turkey(Aktas) [AEHO06], Israel (Shamai, Shental) [SW97, SWSW04].
This is of course not the complete list of researchers in the area. In fact, cooperative signal
processing between the base stations has also been proposed as the potential radio interface
for the 4G cellular networks, capable for providing the targeted three fold spectral efficiency
over LTE.

Performing cooperative interference cancellation between the BSs causes a change in
the current cellular network paradigm and brings forth new challenges requiring a vast
amount of additional research. One of the foremost problems relates to the application
of different receive strategies to efficiently overcome the OCI, while maintaining a low
backhaul. In this context, the effect of cell loading and user position within a cell can be
analyzed to give a better insight into the effect of user behavior on the receiver performance.
This work can be further extended by exploring the issues related to channel estimation,
thereby developing means to convey the channel information efficiently while accurately
identifying all significant received signals. Additionally, the common MIMO assumption of
perfect synchronization between all the received data streams breaks down for the consid-
ered cooperative networks, and schemes for improving frequency and time synchronization
between different entities in a cellular network also need to be investigated.

Another interesting area for research is the optimal scheduling of the users for the co-
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Figure 1.1: Comparing conventional and cooperative cellular network architectures.

operative processing under constrained backhaul with the objective to find the best com-
promise between the throughput and operating cost. It is well known that joint scheduling
of users for cooperative networks is a complex optimization problem, and requires a huge
amount of channel information to be sent repeatedly to a centrally located scheduler over
the backhaul links. Distributed scheduling schemes therefore need to be investigated that
work only on locally available channel knowledge.

The above discussion shows that even at a single glance the cooperative cellular archi-
tecture provides us with a multitude of interesting open questions. While some of these
problems can be solved by simple extension to the existing theory, others are more involved
and serve as potential research areas. The author hopes that this thesis can provide some
contribution to few of these topics.

1.2 Objective of this Thesis

This thesis’ objectives are to
e Investigate centralized cooperative multi-user detection

— Study different multi-user algorithms in the context of joint processing.

— Examine the effect of user position and cell loading on the effectiveness of joint
processing.

— Investigate the quantization of the received baseband signal and its effect on
the receiver performance.

e Investigate decentralized cooperative multi-user detection
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— Develop multi-user detection strategies using base station cooperation for de-
centralized processing, and find an upper bound for decentralized processing.

— Identify an efficient quantization strategy for reliability values available at the
output of the decoder/demapper.

1.3 Outline

Chapters 2 and 3 establish the notation and familiarizes the reader with the basics. In
chapter 2, we start with the description of the underlying transmission systems (single-
carrier, multi-carrier) for which the methods to be developed later are applicable. We
also look at the system setup for the centralized and decentralized multi-user detection
schemes involving base station cooperation. Besides, the common set of parameters to be
used throughout the thesis during the numerical analysis is identified. In Chapter 3, we
look at different multi-user detection schemes, i.e., how the receiving side of a transmission
system obtains the estimates for the transmitted data. Here, we provide results for only
the linear and iterative detection schemes under uncoded transmission.

Chapter 4 looks at joint multi-user detection and decoding through base station coop-
eration. We start by investigating the information theoretic bounds on the joint processing.
The performance of different centralized linear and iterative receivers is then presented to-
gether with the effect of user position and cell loading on its performance. Finally, different
quantization schemes are applied to the baseband signal and their effect on the distributed
antenna system receiver performance is studied.

Chapters 4 and 6 both deal with decentralized cooperative signal processing. In chap-
ter 5, we focus on the distributed detection algorithms where the processed information
available at the output of the detector/decoder is exchanged. The decentralized detection
algorithms are again classified into two types, the first one requiring an iterative exchange
of improving reliability values between the BSs, while the second one is based on a succes-
sive detection approach. Also, the optimal distributed detection scheme is identified under
unconstrained backhaul. Chapter 6 develops tools to efficiently quantize the reliability val-
ues to be exchanged between the BSs in order to minimize the loss of information for any
given number of quantization bits.

The thesis is concluded in chapter 7 with a summary of the main results and an outlook.





