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Abstract

Over the last decade wireless and mobile communication has become manifest in our everyday life.
Furthermore, the development of ever increasing data rates, seamless mobility, and unlimited flexibility
will not decline but rather accelerate. While existing mobile communication networks improved service
quality and reached more users than ever before, new markets developed all over the world where mobile
communication continues its success story with an unknown growth. Motivated by the chances and
benefits, wireless and mobile communication systems undergo a change from only providing voice and
other multimedia message services to systems which deliver internet to any place in the world. However,
this ambitious goal cannot be accomplished with conventional cellular systems and instead requires new
technologies such as multi-cell cooperation, movable radio access points without backhaul connection,

and multiple-antenna transmission.

Among the most challenging problems in cellular networks is inter-cell interference. In order to assure
sufficient quality of service, currently deployed systems try to avoid interference by coordinating re-
sources such that two adjacent areas do not use the same spectrum. By contrast, multi-cell cooperation
aims at exploiting interference instead of avoiding it, which is achieved by an additional cooperation
among multiple radio access points instead of solely coordinating resources. Furthermore, the density
of radio access points in currently deployed cellular networks increases in order to improve the reuse
of available resources and to serve more user terminals at high data rates. This implies higher deploy-
ment costs which demands low-cost and flexible alternatives. In this thesis relaying is introduced as one
possibility to increase the number of radio access points, to improve the resource reuse, and to organize
cellular networks more flexibly. However, relay nodes also introduce more interference in the network,

which demands more sophisticated interference mitigation algorithms.

This thesis discusses at first the full-duplex relay channel where multiple relay nodes support a single
communication pair. Using this channel, coding strategies with different complexity and operating re-
gions are introduced and evaluated in the context of a Gaussian system model. Through this performance
analysis, simple high-performance protocols are identified and applied in the remainder of this thesis.

Building on this analysis, the half-duplex relay channel introduces the orthogonality constraint, which
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prohibits simultaneous receiving and transmitting on the same time-frequency resource. Based upon this
more practical consideration, different protocols are introduced, discussed, and again evaluated using a

Gaussian system model.

Using the interference and broadcast channel, the half-duplex relay-channel is extended by a scenario
with multiple communication pairs each supported by multiple relay nodes. With such a system model
upcoming challenges in relay-based next generation mobile communication networks can be modeled
and evaluated. For instance, protocols with coordination and cooperation on both source-to-relay and
relay-to-user links are introduced and discussed. In order to analyze the extended relay-channel, the
discussed protocols are applied to a setup, which uses a simplified channel model derived from a mobile
communication system. The outcome is that a simple cascade of inter-source cooperation and inter-
relay coordination achieves significant rate improvements over conventional systems while providing a

significant amount of flexibility.

The analysis is rounded off with a system-level evaluation, which applies the previously derived pro-
tocols to a mobile communication system. For instance, an urban macro and micro-cellular scenario
are discussed using the achievable rates and throughput within the respective scenario. Furthermore,
a cost-benefit analysis is carried out, which focuses on the tradeoff between necessary costs to deploy
relay nodes and achieved benefits through relaying. Using this evaluation, this work provides a proof-of-

concept for relaying as an integral part of next generation mobile communication systems.

This thesis develops step-by-step a proposal for a relay-based mobile communication system. It shows
that simple protocols, which decode and forward the source message appear favorable in a mobile com-
munication system with fixed relay nodes. A cooperative access from source nodes to relay nodes is able
to improve data rates on the feederlink and therefore counteract the loss caused by the half-duplex chan-
nel access of relay nodes. Thereafter, using multiple micro-cells relay nodes can improve the spectrum
reuse while keeping the additional deployment costs low. Hence, for the analyzed scenarios relaying
appears to be an interesting and viable possibility to improve data rates and flexibility in next generation

mobile communication networks.



Zusammenfassung

In den letzten Jahren konnte sich drahtlose und mobile Kommunikation als fester Bestandteil unseres tig-
lichen Lebens etablieren, wobei die Entwicklung hin zu immer hoheren Datenraten, grenzenloser Mobi-
litdt, sowie unbegrenzter Flexibilitit keinen Abbruch nimmt sondern stetig ansteigt. Wihrend bestehende
Mobilfunknetzwerke die erreichbaren Raten und die Anzahl unterstiitzter Nutzer erhohen, werden immer
neue Mirkte erschlossen in denen die Mobilfunkkommunikation ihren Siegeszug fortsetzt. Drahtlose und
mobile Funknetze durchlaufen eine Entwicklung von Sprach- oder Multimediadiensten hin zu Systemen,
welche den priméren Anschluss an das Internet darstellen. Um dieses anspruchsvolle Ziel zu erreichen,
werden neue Technologien benétigt, wie z. B. Kooperation mehrerer Zellen, bewegliche Zugriffsknoten

ohne Festnetzanbindung an das Datennetzwerk sowie Mehrantenneniibertragung.

Zu den herausfordensten Problemen in zellularen Funknetzen gehort wohl die Interferenz zwischen den
einzelnen Zellen. Um eine hinreichende Dienstequalitit zu gewihrleisten, koordinieren heutige Netze
ihre Ressourcen so, dass zwei sich angrenzende Zellen unterschiedliche spektrale Ressourcen verwen-
den. Im Gegensatz dazu nutzt man Interferenz in Systemen mit Mehrzellenkooperation aus, indem z. B.
mehrere Basisstationen kooperativ Nutzer versorgen anstatt lediglich die verwendeten Ressourcen zu
koordinieren. Zudem wird die Dichte an Zugriffsknoten in derzeit verwendeten Systemen stetig erhoht,
um die Wiederverwendung des Spektrums zu verbessern und die Anzahl der versorgten Nutzer zu er-
hohen. Die Erhohung der Knotendichte bedeutet jedoch eine Zunahme der notwendigen Aufbaukosten
und erfordert dariiber hinaus flexible und kostengiinstige Alternativen zu bestehenden Technologien. In
dieser Arbeit wird Relaying als eine solche Moglichkeit eingefiihrt, um die Dichte der Zugriffsknoten zu
erhohen, die Wiederverwendung des Spektrums zu verbessern sowie die Organisation des Netzwerkes
flexibler zu gestalten. Nichtsdestotrotz verursacht Relaying auch eine Zunahme der Interferenz innerhalb

der einzelnen Zellen, wodurch neue Algorithm zur Interferenzunterdriickung notwendig sind.

Zunichst fiihrt diese Arbeit den Vollduplex-Relaykanal ein, in dem ein einzelnes Kommunikationspaar
durch mehrere Vollduplex-Relayknoten unterstiitzt wird. Mit Hilfe dieses Kanals werden Kodierstra-
tegien mit unterschiedlicher Komplexitdt und Wirkungsregionen eingefiihrt und anschliessend fiir ein

Systemmodell mit Gaussch’schen Rauschen evaluiert. Diese Analyse identifiziert einfache Protokolle
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mit hinreichender Leistung, welche auch im weiteren Verlauf der Arbeit verwendet werden. Aufbauend
auf dieser Analyse fiihrt anschliessend der Halbduplex-Relaykanal die Orthogonalitdtsbedingung ein,
welche besagt, dass ein Relayknoten nicht auf der gleichen Zeit-Frequenzresource senden und empfan-
gen kann. Auch fiir diesen Kanal werden verschiedene Protokolle vorgestellt, diskusiert sowie mit Hilfe

eines Kanals mit Gauss’scher Signalisierung evaluiert.

Daran anschliessend wird der Halbduplex-Relaykanal mit mehreren, parallen Kommunikationspaaren
auf Basis des Broadcast- und Interferenzkanals eingefiihrt. Mit Hilfe dieses Modells konnen die Proble-
me und Anforderungen in einem relaybasierten Mobilfunknetz modelliert und evaluiert werden. Unter
anderem werden Protokolle basierend auf Koordination and Kooperation von Quell- und Relayknoten
diskutiert. Weiterhin werden diese Protokolle auf ein vereinfachtes Kanalmodel eines Mobilfunknetzes
angewandt und analysiert. Es zeigt sich, dass eine einfach Kaskade von Quellknotenkooperation und
Relayknotenkoordination in der Lage ist, eine signifikante Verbesserung der Raten gegeniiber einem

gewohnlichen Mobilfunknetz zu erreichen.

Die Analyse dieser Arbeit wird durch eine Analyse auf Systemlevel abgeschlossen, welche die zuvor
eingefiihrten Protokolle in einem Mobilfunksystem anwendet. Unter anderem werden die erreichbaren
Raten in stddtischen Szenarien mit Mikro- bzw. Makrozellenstruktur diskutiert. Weiterhin wird die Leis-
tung der eingefiihrten Protokolle in Abhiingigkeit von den Kosten fiir den Aufbau eines Relaynetzwerkes
analysiert. Mit Hilfe dieser Analyse ist es moglich, die Umsetzbarkeit von Relaying als zusitzliche Op-

tion eines Mobilfunksystems zu beurteilen.

In dieser Arbeit wird schrittweise ein Vorschlag fiir ein relaybasiertes Mobilfunknetz herausgearbeitet.
Unter anderem wird gezeigt, dass einfache Protokolle, bei denen das Relay die vollstandige Nachricht
dekodiert und weiterleitet, eine sehr gute Leistung bieten und dennoch die Kodier- und Dekodierkom-
plexitit hinreichend gering ist. Weiterhin kann der Flaschenhals eines Relaynetzwerkes, die Verbindung
zwischen Quelle und Relay, mit Hilfe einer kooperativen Ubertragung wesentlich verbessert werden.
Aufgrund der parallen Verwendung mehrerer Relayknoten kdnnen zudem mehrere Mikrozellen zu jeder
Basisstation zugeordnet und parallel versorgt werden. Durch die mehrfache Verwendung der gleichen
Resourcen innerhalb einer Zelle, kann Relaying in Mobilfunknetzen der nachsten Generation signifikan-

te Ratenverbesserungen erreichen und erscheint demzufole als ernsthafte Zusatzoption fiir diese Netze.
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1 Introduction

Wireless communication systems and applications for wireless terminals such as PDAs, notebooks, and
cellular phones are growing in importance and have become an integral part of everyday life. With the
introduction of new standards, services, and hardware supporting more sophisticated applications, the
demand for higher data rates has significantly increased. In the course of this development, the number
of wireless terminals has also increased, which raises the question of how to efficiently operate networks,
i. e., implement transmission protocols, which exploit the signal propagation characteristics in a network

of wireless terminals.

1.1 Motivation

Since Claude E. Shannon established the foundation of information theory in [Sha48, Sha49], major
advances have been made in the field of point-to-point communication. However, network information
theory, i.e., information theory for networks consisting of unicast and multicast-links, has not been
as widely investigated. Even for networks with Additive White Gaussian Noise (AWGN) and without

fading, the capacity is often not yet known. One reason for the difficulties arising during the analysis of

X1 ni X

\)

U Y2 T2 >+ Y2
] 1 ]
) b no n2
(a) Multiple access channel (b) Broadcast channel (c) Interference channel

Figure 1.1: Examples for three basic channels in the context of network information theory. z indicates
the channel input of the source node(s), n denotes the additive noise, and y denotes the channel output at
the destination node(s).
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Figure 1.2: Power distribution over r for two different deployment scenarios

wireless networks is their broadcast nature. In comparison to wired networks, it is not possible that a
certain transmission is only received by one dedicated receiver; it always introduces interference towards
other terminals. Nonetheless, among the particular problems of network information theory, which have
been solved thus far are the capacity region of the general Multiple Access Channel (MAC) which is
illustrated in Figure 1.1(a), the Gaussian Broadcast Channel (BC) which is depicted in Figure 1.1(b)
and, in parts of the Gaussian Interference Channel (IC) which is shown in Figure 1.1(c). Both MAC
and BC are an integral part of today’s wireless communication systems since the former represents the
uplink channel from users to a Radio Access Point (RAP) and the latter the corresponding downlink.
Nevertheless, among the unanswered questions are the Gaussian IC and the relay channel, which are
both in the focus of this thesis.

To achieve the demanding goals of current and next generation wireless communication systems such as
higher data rates, better connectivity, increased reliability, and more fairness, we need to address their
basic challenge: interference. In comparison to a wired network where new cables can be deployed
to increase the available resources, wireless networks must share the same spectrum, which makes the
available bandwidth a scarce and expensive resource. In order to use the available resources as efficiently
as possible, wireless communication networks must reuse them in the spatial domain; this requires so-
phisticated resource management algorithms. For conventional systems, spectrum reuse also implies the
necessity to deploy additional base stations connected to a wired backhaul network, which significantly

increases network setup and operation expenditure.

A challenging property as well as opportunity of the wireless channel is the nonlinear signal attenuation
(path loss), which offers the possibility to concentrate power on certain points in the network. On the
other hand, it also requires that either the density of RAPs or the transmission power must increase with
the signal attenuation, which is of particular interest in wireless networks where interference plays an
important role. Compared to currently deployed systems, next generation networks tend to use higher

carrier frequencies where path loss becomes an even more important issue.

Consider an AWGN channel with a path loss exponent § = 4, receiver noise power N, and transmission
power P. Given these qualities, the received Signal-to-Noise Ratio (SNR) at a normalized distance r is
given by p(r) = >, P/N - |r; — 7| ™% where ; is the position of the i-th RAP. Figure 1.2 compares the
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Figure 1.3: Comparison of repeaters and switches in wired networks.

received SNR in two different configurations of a wireless line network:

A: RAPs are deployed at r; = [0, 3,6, - - - ,4 - 3] and each transmits with power P such that Pa/N =
10,

B: RAPs are deployed atr; = [0, 2,4, - - - ,4-2] and each transmits with power Py such that £8/N = 2.

Configuration B deploys 1.5 times as many RAPs as configuration A but its RAPs transmit with one-
fifth the power Pa. Therefore, the total energy consumption of the latter configuration is less than
half of the energy consumption in configuration A, but both achieve the same minimum SNR. This
example illustrates the well-known fact that densely deployed networks need less total transmission
power and are able to improve fairness due to a more homogeneous power distribution. On the other
hand, they face severe challenges to cope with the increased number of interfering terminals, the partly
increased interference power level, and the more complex user scheduling. Another problem is the
necessity to connect RAPs through a backhaul using out-of-band resources. Backhaul requirements such
as the availability of a high-speed wired connection or micro-wave links to a central server diminish
deployment flexibility and raise necessary expenditure. Hence, deployment and transmission strategies
in next generation networks should exploit the opportunities and benefits in wireless networks while
being able to mitigate the increased number of interferers caused by smaller cells and cost issues caused
by the higher RAP density.

1.2 Relaying

One promising strategy to achieve the previously defined goals is to add intermediate nodes (known as
relay nodes) supporting individual communication pairs. The idea of relaying is well known from wired
networks where repeaters and switches are used to connect networks. Repeaters operate on the physical
layer and amplify the received signal before it is forwarded. In contrast, switches operate on the medium
access layer and are able to route packets to their dedicated receivers [U.S96]. Hence, switches are
able to separate networks on the physical layer as illustrated in Figure 1.3 for the case where node A
communicates with node B and node C' communicates with node D. In the case of repeaters we have
one joint pdf of both channel outputs depending on both channel inputs, whereas in case of switches,
the joint pdf can be factorized such that the channel output of each destination node only depends on the

channel input of the corresponding source node.
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Figure 1.4: The three-terminal relay channel with channel inputs X and X, and channel outputs Y, and
Y 4 defined over the conditional probability density function p(y., y4|zs, ).

Van der Meulen [vdM68, vdM71] was the first to apply this idea to wireless communication systems
and introduced the three-terminal relay channel as illustrated in Figure 1.4. A single source-destination
communication pair is supported by a relay node, which receives the source transmission and transmits
support information to the destination node. In [CG79] Cover and El Gamal presented two basic coding
strategies for the three-terminal relay channel, which are still the basis for most relaying protocols today:
Decode-and-Forward (DF) where the relay node decodes the source message and provides additional, re-
dundant information to the destination and Compress-and-Forward (CF) where the relay node quantizes

its channel output and forwards the quantization to the destination.

Relays using DF and CF are operating in a digital relaying mode, which affects both physical and medium
access layer. Analog relays, by contrast, work as a repeater and simply amplify and forward the received
signal. Neither modes are able to separate two wireless networks on the physical layer, however digital
relays are able to separate networks on the medium access layer. The former mode offers more flexibility
and opportunities with respect to coding and resource assignment strategies to alleviate the effects of
interference between (relay-) cells. In addition, digital relays can be seen as a micro-base station with-
out wired backhaul instead using in-band resources as feeder link. By replacing parts of the deployed
base stations with additional relay nodes, both base stations and relay nodes are able to achieve a more
homogeneous power distribution while reducing expenditures due to lower hardware costs and the less
developed backhaul infrastructure. On the other hand, relay nodes utilize a portion of the available band-
width which implies a loss of spectral efficiency and raises the question of whether the improved channel

conditions and the more homogeneous power distribution can outweigh this loss.

1.3 Scope, Outline, and Contribution of this Work

The focus of this work is on wireless communication systems supported by relay nodes. In particular,
this work considers mobile communication systems with wired infrastructure and centralized control.
This work does not consider analog relaying; rather, it analyzes approaches that utilize the degrees of
freedom offered by DF and CF. Although this work is concentrated on physical layer access, it also
points out how relaying affects higher layer functions such as user scheduling and resource management

in mobile communication systems.

This discussion begins with Chapter 2, which addresses the protocol complexity in relay networks
employing multiple relay nodes to support a single source-destination pair. In order to justify the
performance-complexity tradeoff of different relaying strategies, Chapter 2 uses a full-duplex system

model and introduces a framework, which generalizes and combines DF and CF based relaying strate-
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gies. This framework is used to derive protocols of lower complexity and to compare their performance
using a Gaussian relay channel model. Reflecting more practical constraints, Chapter 3 extends the pre-
viously used system model by an orthogonality constraint, which forces nodes to either listen or transmit
on the same resource (but not both). The orthogonality constraint and the previously derived protocols
are combined and are again analyzed with respect to their performance-complexity tradeoff. Among
others Chapter 3 introduces a protocol where two relay nodes are alternately transmitting, which proves
to be the preferable strategy in a half-duplex two-relay network.

In Chapters 2 and 3, the multiple relay channel with a single source-destination pair is investigated.
Although this investigation is helpful to understand the performance-complexity tradeoff of protocols for
multiple relay nodes, it ignores the effects of interference between multiple communication pairs. Thus,
Chapter 4 extends the interference channel by multiple relay nodes in order to analyze how interference
mitigation and cancellation schemes can be combined with relaying, and how relaying can be integrated
in a scenario with multiple communication pairs. In the course of this analysis, a framework is presented

which allows for a variety of protocols applicable in mobile communication systems.

Finally, Chapter 5 concludes the investigation by applying the previously derived results to a mobile
communication system considering resource management as well as user scheduling, clustering, and
fairness. In order to justify the previously derived protocols, the network and channel model of a next
generation mobile communication system is used and the presented relaying approaches are integrated.
Although this analysis concentrates on physical layer aspects, implications on higher layer functions
are outlined and first algorithms using well-investigated standard techniques are presented. This thesis
culminates with Chapter 6, which gives an outline for future work to integrate relaying in upcoming next

generation networks.

Each individual chapter focuses on a small set of aspects and problems that arose during the course of
developing this thesis. Therefore, many problems, results, and methods are not presented in detail. For
the purpose of providing a more elaborate insight into the topic of relaying, each chapter gives in its
last section an extensive list of further literature and discusses related topics. Furthermore, this thesis
assumes that the reader knows terms such as achievable rates, capacity, joint typicality, or Markov
chain. To avoid any misunderstanding while reading this thesis, Appendix A defines these terms using
the notation applied herein.
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