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Abstract

The ever growing demand of high data rates in mobile communication systems calls for

methods which allow to use the radio frequency spectrum as efficiently as possible. Fu-

ture mobile communication systems most likely will involve multiple-input multiple-output

(MIMO) techniques in combination with high order constellations, raising the amount of

transmitted data per channel usage in order to enhance spectral efficiency. However, due

to non-orthogonality of the transmission channel, this performance improvement comes at

the cost of increased computational complexity in the receiver. One of the main challenge

is the computationally intense task of MIMO detection use to separate the spatially mul-

tiplexed data streams.

Motivated by the tremendous gains in turbo channel decoder, the concept of iterative

processing has been recently extended to include iterations between MIMO detector and

channel decoder. Soft-In Soft-Out (SISO) detectors, when concatenated with a channel

decoder, can significantly improve the quality of wireless transmission by performing joint,

iterative data detection and channel decoding through the exchange of soft information.

However, soft information from channel decoder increases the search space and hereby

the computational complexity of the tree search in SISO detector. Furthermore, the com-

plexity of the optimal MAP detector grows exponentially with system dimensions. These

considerations motivate the design of complexity reduced suboptimal detectors for iterative

detection and decoding.

This thesis focuses on complexity reduction of the SISO detector at minimum performance

loss and to enable high throughput detection. Detection algorithms based on depth first

tree search enables MAP detection performance at reduced but still high complexity. This

thesis introduces a noval method for complexity reduction of depth first search detector.

Based on the analysis of the reliability information form channel decoder, predefinition of

the bits values is enabled. This allows to reduce the search space and thereby ease the

complexity of detector. In addition to this, parallel processing has been exploited in the

target detection algorithm to speed up the detection and increase throughput. In order to

evaluate the performance and complexity of hardware implementation, this thesis includes

VLSI implementation of the processor model for soft-out MIMO detection. Synthesis re-

sults show that it is possible to achieve a high throughput compared to state of the art

implementations with relatively small chip area. Final evaluation of the SISO detector is

performed in a case study on MIMO detection for 3GPP LTE system.



Kurzfassung

Der stetig wachsende Bedarf nach hohen Datenraten in mobilen Nachrichtensystemen er-

fordert eine zunehmend effiziente Nutzung des Übertragungsspektrums. Zur Verbesserung

der spektralen Effizienz werden zukünftige mobile Nachrichtensysteme voraussichtlich

Mehrantennentechniken (Multiple Input Multiple Output - MIMO Techniken) einbeziehen

um in Kombination mit hohen Konstellationsgrößen möglichst große Datenmengen pro

Kanalzugriff zu übertragen. Aufgrund der Nicht-Orthogonalität der Übertragungskanäle sind

zum Erreichen dieser Leistungssteigerung empfangsseitig jedoch rechenintensive Operationen

notwendig. Eine der maßgeblichen Herausforderungen hierbei ist die aufwändige MIMO De-

tektion zur Separierung der räumlich überlagerten Datenströme.

Motiviert durch die enormen Gewinne von Turbo-Kanaldekodern wurden in letzter Zeit die

Konzepte iterativer (Turbo) Verarbeitung so erweitert, dass diese auch Iterationen zwischen

MIMODetektoren und Kanaldecodern umfassen. Sogenannte Soft-In Soft-Out (SISO) Detek-

toren können hierbei in Verbindung mit geeigneten Kanaldecodern die Übertragungsqualität

signifikant verbessern. Ermöglicht wird dies durch eine gemeinsame, iterative Detektion

und Dekodierung und den Austausch von Zuverlässigkeitsinformationen (Soft-Werten). Ein

Nachteil dieser SISO Detektion ist jedoch, dass durch die Zuverlässigkeitsinformationen des

Kanaldekoders der Suchraum nachgelagerter Detektionen und somit der Rechenaufwand der

enthaltenen Baumsuche vergrößert wird. Des Weiteren steigt die Komplexität des opti-

malen MAP Detektor exponentiell mit den Systemdimensionen. Abhilfe bietet die Entwick-

lung komplexitätsreduzierter suboptimaler Detektoren für die iterative Detektion und De-

codierung.

Fokus dieser Arbeit ist die Komplexitätsreduktion von SISO Detektoren bei minimalem

Genauigkeitsverlust zum Ermöglichen hoher Datenraten. Detektionsalgorithmen auf Basis

von Baumsuchen erreichen die Genauigkeit der MAP Detektion mit reduzierter jedoch immer

noch hoher Komplexität. Zur weiteren Komplexitätsreduktion wird im Rahmen dieser Ar-

beit ein neuer Ansatz für Detektionsalgorithmen der Tiefensuche vorgestellt. Aufbauend auf

einer Analyse der Zuverlässigkeitsinformation des Decoders ist es möglich einzelne Bitwerte

vor der Detektion festzulegen. Dies führt zu einer deutlichen Reduktion des Suchraumes

und somit zu einer Verringerung der Detektionskomplexität. Eine weitere Steigerung des

Durchsatzes wurde durch eine Parallelisierung des gewählten Detektionsalgorithmus. Zur

Bewertung der Leistungsfähigkeit und Komplexität einer Hardwareimplementierung wurde

zudem eine VLSI Implementierung des zugrundeliegenden Soft-Output Prozessormodells er-

stellt. Die Ergebnisse der Synthese verdeutlichen, dass, verglichen mit herkömmlichen Um-

setzungen, hohe Datenraten mit relativ kleiner Chip Fläche erreicht werden können. Eine

abschließende Bewertung des SISO Detektors wurde anhand einer Fallstudie für 3GPP LTE

Systeme durchgeführt.
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0n×m Null matrix of Dimension n×m

a Distance between QAM constellation symbols

b Bit value ∈ ±1
cm,l lth bit of the symbols send by mth transmit antenna; cm,l ∈ ±1
cML
m,l ML estimate of cm,l

c Vector of transmit bits of a transmission symbol vector x;

cML ML estimate of c

ct tth vector of transmitted bits

ci Part of the vector of transmitted bits from tree root to tree level

i.

d Predefined distance

e Euler number (≈ 2, 7182818)

Eb Average energy per bit

Ex Average transmit energy

G Filter matrix

GMMSE MMSE Filter matrix

GZF ZF Filter matrix

H Channel matrix

H̄ Extended channel matrix for MMSE preprocessing

In Identity matrix of Dimension n× n

K Size of candidates list, K = #K
L Number of bits per QAM symbol

L(·) A Posteriori information

La(·) A Priori information

La(·) Vector of a priori information

LClip Internal Clipping value

Le(·) Extrinsic information

Lmax Clipping value

n AWGN noise vector

ñ Vector of remaining noise after detection

M Maximum number of iterations

N0 Noise power

NT Number of transmit antennas

NR Number of receive antennas

Q QAM Constellation size

Q Matrix of the QR decomposition

ri,j Element of the R Matrix with row i and column j

R Search radius

Rc Code rate
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RClipped Search radius with internal clipping

R Matrix of the QR decomposition

T Size of search tuple, T = #T
u Vector of uncoded i.i.d. information bits

û Vector of estimated information bits u

x Sent symbol vector

x̂ Estimate of sent symbol vector

x̂ML ML estimate of the sent symbol vector

x̂SIC SIC estimate of the sent symbol vector

yi
′ Preprocessed received symbol vector of the ith transmit antenna

yi
′′ Interference reduced received symbol vector of the ith transmit

antenna

yi
′′′ y′′ normalized with rii

y Received symbol vector

♯n Average number of node extensions

∂ Overhead rate

∆r Relative position

λ0 Metric of leaf node

λi Partial metric at layer i

λmin Minimum metric λ0

λmin,t tth minimum metric λ0

σ2 Ratio of noise to transmit power

σ2
n Noise variance

σ2
x Variance of send vector

C set of valid send vector c

K Set of candidates for L-values calculation

T Set of leaf nodes in search tuple

X Set of valid send symbol vector x



Chapter 1

Introduction

1.1 Motivation and Research Focus

To fulfil the demand for ever growing data rates, future mobile communication systems

will make use of multiple-input multiple-output (MIMO) techniques to enhance spectral

efficiency. If the propagation environment offers a sufficient amount of spatial diversity,

the spectral efficiency achievable with MIMO systems scales linearly with the minimum

of the number of transmit and receive antennas. However, this performance improvement

comes at the cost of increased computational complexity in the receiver. One of the main

challenge is the computationally intense task of MIMO detection use to separate the spa-

tially multiplexed data streams. Multiple antennas in a system introduce interference on

each other, making the allocation of received signal values to the most likely sent symbols a

complex task. Over the years, MIMO detection algorithms for spatially-multiplexed signals

have been thoroughly investigated. The optimal solution to detect spatially-multiplexed

signals relies on exhaustive search over a multi-dimension constellation set, whose size

grows exponentially with the number of antennas. However, the heavy computational bur-

den of such an optimal detection is impractical for implementation. The well-known sphere

detector (SD)[Poh81] effectively transforms the exhaustive search into a constrained tree

search with extensive pruning of irrelevant branches, and hence is regarded as a pragmatic

solution for the MIMO detection problem [Lai11].

Triggered by the tremendous gains in data rate provided by iterative processing of channel

codes, the concept of iterative processing has recently propagated further to include iter-

ations between MIMO detector and channel decoder. Soft-In Soft-Out (SISO) detectors,

when concatenated with a SISO channel decoder, can significantly improve the quality of

wireless transmission by performing joint, iterative data detection and channel decoding

through the exchange of soft information. However, the exponential complexity of the opti-

mal maximum a posterior probability detector rapidly becomes prohibitive. This motivates

the design of suboptimal SISO detectors whose complexities are scalable with system di-

mensions. Complexity reduced SISO MIMO detection algorithms, e.g. list sphere detector
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(LSD) [HtB03], Single tree search (STS) [SBB08] and Tuple search (TS) [MFF09], has

shown to be of high accuracy but also of high complexity, resulting from the complexity

of the underlying tree searches. In order to reduce this complexity, [HtB03] proposed to

accomplish the iterations on a candidate list generated in the first iterations, leading to a

significant performance loss and high memory requirements [MFF09].

The focus of the work presented in this thesis is to reduce the complexity of the SISO

detector at minimum or even no performance loss and to enable high throughput. The

presence of a soft information in iterative detection↔decoding increases the search space

and hereby the computational complexity of the tree search in SISO detector. In this

work it is shown how this complexity can be reduced by limiting the tree search to uncer-

tain bits i.e. bits with low soft information. In order to demonstrate the impact of this

concept on performance and complexity of a SISO detector, the TS algorithm [MvBF09]

together with complexity reduction techniques of Search Sequence Determination (SSD)

[MF09a] and Metric Estimation (ME) [Men10] is used. For hard-input, the complexity of

TS algorithm is greatly reduced by the geometrical approach of SSD. In case of iterative

detection↔decoding, the soft information from channel decoder destroys the geometrical

properties of constellation and as a result SSD leads to wrong sequence of nodes for tree

enumeration. The proposed concept of limiting the tree search to uncertain bits, besides

the intended reduction in complexity of the tree search, will also help to correct the enu-

meration sequence determined by SSD. To increase throughput of the SISO detection, this

work has introduced parallel processing in the TS algorithm. A case study on MIMO de-

tection in 3GPP Long Term Evolution (LTE) [3GP06] is also a part of this work. The final

contribution of this work is the VLSI implementation of the Processor model for MIMO

detection.

1.2 Outline

Chapter 2 describes the used system model and basic considerations of the MIMO de-

tection. It also formulates the problem of MIMO detection addressed in this work.

Chapter 3 introduces a generic framework for tree search based detection. Sphere detec-

tion algorithm in the context of iterative detection and decoding is described. It is

followed by description of the algorithms related to this work. Several complexity

reduction techniques are also mentioned in this chapter.

Chapter 4 presents a noval method for reducing the complexity of MIMO detection in

joint iterative detection and decoding. The chapter starts by describing the pro-

posed method in detail. It then explains how the proposed method helps in finding

the search sequence for tree enumeration in SISO detection. Simulation results are

presented in the last part of the chapter.

Chapter 5 introduces parallel processing in TS algorithm to speed up the detection and
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hence increasing the throughput of the algorithm. The chapter first highlights the

problems of the TS algorithm due to sequential node processing. It then describes the

methods of parallel processing in detail. Finally this chapter provides the simulation

results and efficiency analysis of the the resulting algorithm.

Chapter 6 is a case study on MIMO detection in 3GPP LTE system. Simulations results

of the several detection algorithms for different LTE channel models are provided in

this chapter.

Chapter 7 provides an overview of the processor model for TS algorithm. The chapter

also presents the synthesis results for VLSI implementation of the processor model

and its comparison to state of the art implementations.

Chapter 8 concludes the thesis with a summary of the main results and an outlook.



Chapter 2

Fundamentals

This chapter is a brief overview of the used system model, basic considerations of the

MIMO detection and formulation of the problem addressed in this work. The details of

development of the tree search methods and techniques that will enable the implementation

of efficient MIMO detectors are well known and are therefore referred to standard literature.

2.1 System Model

For comparability of the results with other publications and continuation of works in

[Men10] and [Zim07], a MIMO system model with a QAM (Quadrature Amplitude Modu-

lation) constellation is considered in this thesis. This system model, shown in Fig.2.1, will

serve as basis for the subsequent discussions to ensure that the results are applicable to

a wide range of communication scenarios and to provide a common base for the compar-

ison of different detection algorithms. The propagation environment between transmitter

and receiver is assumed to be non line of sight with sufficient scattering to provide large

number of independent transmission paths. Further, to enable low complexity equalization

at the receiver, a frequency non selective narrowband channel is considered in this work.

Since broadband channels can be reduced to narrowband channels with proper modulation

techniques such as Orthogonal Frequency Division Multiplexing (OFDM), MIMO detec-

tion techniques developed for transmission over narrowband channels can be reused for

broadband systems. The task of the detector here is enabling a transmission even with

a weak or noisy received signals close to the theoretical performance limit with highest

possible throughput. Many research works have been carried out for the design of hard

output MIMO detector. The performance of MIMO detector can be significantly improved

by iterative detection↔decoding. However, its complexity limits the overall throughput.

Therefore, the work carried out in this thesis is focused on the development and analysis

of efficient MIMO detector for iterative detection↔decoding.

The system model under consideration is an NT × NR MIMO system based on a bit-

interleaved coded modulation (BICM) [CTB98] transmission strategy with NT transmit
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û

Figure 2.1: System model with BICM transmitter and iterative receiver.

and NR receive antennas. A vector u of independent and identically distributed (i.i.d.) in-

formation bits is encoded by an outer channel code with rate Rc. The coded vector v is bit-

interleaved and portioned into blocks c ofNT·L bits, where L denotes the number of bits per

transmit symbol. For the transmission, the corresponding bits c ∈ C, covered in the set of

permitted bit vectors, are mapped (e.g. gray mapping) onto complex constellation symbols

x(c) = [x0, ...xNT−1]
T = map(c) ∈ X , the set of valid transmit symbols with cardinality

#X = #C = 2L. The transmit power is normalized such that E{xxH} = Ex/NTINT
, with

Ex being the average transmit power of x at the transmitter. On behalf of the transmission,

a flat fading channel and an additive white Gaussian noise (AWGN) vector n ∈ CNR×1

with complex components of zero mean i.i.d. gaussian random variables is considered at

the receiver. The noise power density is N0/2 per real dimension (E{nnH} = N0INR
). The

considered passive channel is represented by H ∈ CNT×NR with entries of a zero mean

i.i.d. gaussian random process of variance 1 and is assumed to be perfectly known at the

receiver. The received signal y is therefore given by:

y = Hx+ n (2.1)

with the following multidimensional Gaussian distribution of the complex received signal

(as given e.g. in [W0̈5]):

P (y|x) = 1

(πN0)NR
e
− ∥y−Hx̂∥2

N0 (2.2)

The number of transmitted information bits per vector symbol is NT .L.Rc. With the

average received energy per vector symbol given by Ex.NR, the signal-to-noise-ratio at the

receiver applied to the energy of one information bit, Eb, can be stated as:

Eb

N0

=
1

NT .L.Rc

(Ex/NT)(NTNR)

N0

=
Ex

N0

NR

NT

1

L.Rc

In order to ensure comparability of the results, a simulation setup equivalent to the one

used in e.g. [HtB03, ZF06] [Men10] [Zim07] is considered. The simulations are carried out
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for a rate 1/2 PCCC (Parallel Concatenated Convolutional Code, a so called Turbo Code

[BGT93, HOP96]) with two constituent convolutional encoders linked by an interleaver and

with (7R, 5)
1 convolutional code polynomial. The length of an information block is 9216

bits (including tail bits). For the transmission, 64 QAM, Gray Mapping and a 4×4 MIMO

system (NR = NT = 4) was chosen. On the receiver the detection of the transmitted bits is

carried out by a complex valued SISO MIMO detector with and without detector↔decoder

iterations according to the turbo principle [Hag02]. The vector ĉ, which is an estimate of

the detected bits, is deinterleaved and passed to the channel decoder as a vector v̂. The

interleaver at the transmitter and receiver is a random interleaver and it interleaves over

the whole length of the codeword. The channel decoder used is a turbo decoder [RVH95]

based on the BCJR algorithm [BGT93] with 8 internal iterations. û is a vector of the

estimated bits at the output of the channel decoder. Further details and analysis relevant

to the used system model can be found in [HtB03], [Zim07] and [Men10].

2.2 MIMO Detection

The task of the MIMO detector in the described system model is to find an estimate x̂ of

the transmitted signal vector x, given the received signal y according to equation 2.1. The

channel matrix H is assumed to be perfectly known and the noise vector n is unknown.

There are many approaches for the detection of the transmitted signal x. Some of the most

common approaches are mentioned in the following.

2.2.1 Maximum-Likelihood Detection

If we are not interested in soft output and no a priori knowledge from the decoder is

available, the transmitted signal can be detected by maximum likelihood (ML) detection

[vE76]:

x̂ML = argmin
x∈X
{P (x|y)} (2.3)

= argmin
x∈X

{
∥y −Hx̂∥2

}
(2.4)

A straight forward approach to solve equation (2.4) is an exhaustive search over the entire

set of possible vector symbols x ∈ X to find x̂ML. It provides an optimum detection perfor-

mance by minimizing bit error rate (BER). Unfortunately the computational complexity

is NP hard as it increases exponentially with number of transmit antennas NT and QAM

constellation size.

2.2.2 Linear Detection

Linear detectors are attractive whenever some performance degradation can be accepted

in order to achieve very low receiver complexity. The linear detector applies a linear filter

1The subscript R indicates the recursive or feedback generator polynomial.
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matrix to the received signal to compensate the effect of the channel [WFGV98]:

x̂ = Gy = GHx+Gn = GHx+ ñ.

Where G ∈ CNR×NT is a linear filter and ñ is the the resulting noise vector. There are two

types of linear detectors.

Zero Forcing (ZF)

The ZF linear detector finds an estimate of the transmitted signal x by solving equation

(2.1) regardless of the noise:
x̂ = GZFy

WhereGZF is a linear filter matrix obtained by taking Pseudo-Inverse [SB07] of the channel

matrix as follows

GZF =
(
HHH

)−1
HH

Despite its simplicity, this approach suffers from the noise enhancement problem [Zim07].

Minimum Mean Squared Error (MMSE)

In MMSE detection the influence of receiver noise is considered in the design of filter matrix

to overcome the noise enhancement problem of ZF detection. In this case the matrix filter

is defined as
GMMSE = (HHH− σ2INT

)−1HH.

With uniform distribution of transmit power per antenna Ex/NT and noise power N0, the

σ2 for MMSE detection is given by

σ2 =
N0

Ex/NT

=
NTN0

Ex

(2.5)

2.3 Iterative Detection and Decoding

For the used system model with coded transmission, it is suboptimal for the MIMO detec-

tor and channel decoder to operate separately and only on individual vectors of the received

signal. Optimal system performance is achieved only if the detector makes decisions jointly

on all the vectors using a priori information provided by the channel decoder and the chan-

nel decoder makes decisions using likelihood information on all the vectors obtained from

the MIMO detector. Therefore, the application of the Turbo principle [HOP96] for iterative

detection↔decoding is considered. As shown in Fig. 2.1 the receiver consists of the serial

concatenation of an inner MIMO detector and an outer channel decoder. Both modules

accept and generate soft information on the bits of the transmitted codeword c. The de-

tector exploits its knowledge of the received signal, the channel state information and the

a priori information La(ĉ) provided by the decoder to generate the a posteriori information

L(ĉ). The extrinsic information Le(ĉ), obtained by subtracting a priori information La(ĉ)

from a posteriori information L(ĉ), is deinterleaved to become the a priori input La(v̂)
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to the channel decoder. The channel decoder calculates the a posteriori information L(û)

on the outer coded bits using BCJR algorithm [BGT93]. The extrinsic information Le(v̂)

is then interleaved and passed on as a priori knowledge La(ĉ) to the inner detector, thus

completing an iteration. Conventionally used Log-Likelihood Ratios (L-values) provide

a convenient notation to describe the soft-output in iterative detection↔decoding. The

L-value of the bit ĉm,l is defined as follow

L (ĉm,l|y) = ln

(
P (ĉm,l = +1|y)
P (ĉm,l = −1|y)

)
(2.6)

As shown in Fig. 2.1, each processing module in iterative detection↔decoding deals with

three different types of information: the a priori information received from the other mod-

ule, the a posteriori information generated by this module, and the extrinsic information

sent back to the other module. The L-values of the a priori, a posteriori and extrinsic

information on a bit ĉm,l are indicated by La (ĉm,l), L (ĉm,l|y) and Le (ĉm,l|y) respectively.
Their relation can be expressed as

ln
P (ĉm,l = +1|y)
P (ĉm,l = −1|y)︸ ︷︷ ︸

A-Posteriori Information

= ln
P (ĉm,l = +1)

P (ĉm,l = −1)︸ ︷︷ ︸
A-Priori Information

+ ln
p (y|ĉm,l = +1)

p (y|ĉm,l = −1)︸ ︷︷ ︸
Extrinsic Information

L (ĉm,l|y) = La (ĉm,l) + Le (ĉm,l|y)
The following subsections give an overview of the basic approaches to calculate the a

posteriori L-values of the MIMO detector.

2.3.1 A Posteriori Probability Detection

The a posteriori L-values at the output of the MIMO detector can be calculated by com-

monly known form of equation (2.6):

L (ĉm,l|y) = La (ĉm,l) + ln

∑
x∈X+1

m,l

exp

(
− 1

N0
∥y −Hx̂∥2 + 1

2

∑
i,j ̸=m,l

ĉi,j(x)La (ĉi,j)

)
∑

x∈X−1
m,l

exp

(
− 1

N0
∥y −Hx̂∥2 + 1

2

∑
i,j ̸=m,l

ĉi,j(x)La (ĉi,j)

) . (2.7)

Where ĉm,l = ±1 represents the l-th bit of the symbol sent by the m-th antenna. The

derivation of equation (2.7) from equation (2.6) is detailed in Appendix A. The optimal

detection strategy is to evaluate equation (2.7) by a brute-force approach and is referred

as A Posteriori Probability (APP) detection.

2.3.2 MaxLogAPP Detection

The computational effort in the APP detection can be greatly reduced by using the Jaco-

bian logarithm [RVH95] and applying the so called max-log-approximation (MaxLogAPP).

The a posteriori L-values become
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L (ĉm,l|y) ≈ − 1

N0

min
ĉ|ĉm,l=+1

{λ0}+
1

N0

min
ĉ|ĉm,l=−1

{λ0} , (2.8)

λ0 = ∥y −Hx̂(ĉ)∥2 − N0

2

NT−1∑
i=0

L∑
j=1

ĉi,jLa(ĉi,j), (2.9)

where λ0 represents the distance metric for a vector of received symbols y, a given

ĉ and the a priori knowledge La. x̂ corresponds to a possible transmission symbol.

As a consequence, beside the most properly sent symbol argmin
x̂(ĉ)|ĉ∈C

{λ0} - the detection

hypothesis - and its corresponding metric λ0(ĉ
ML), the detector has to determine also

the counter-hypotheses argmin
x̂(ĉ)|ĉ∈C,ĉm,l ̸=ĉML

m,l

{λ0} with their metrics for each bit.

Derivation of equations 2.8 and 2.9 can found in Appendix A.

2.3.3 Tree Search Based MIMO Detection

The basic aim of calculating the L-values in equation (2.8) is to determine the most likely

sent symbols x(c), with ĉ = arg min
ĉ|ĉm,l=±1

{λ0}. A common approach to simplify the de-

tection of these symbols is to transform the detection problem into a tree search problem

using QR decomposition of the channel matrix H as described in section 3.1. An appro-

priate tree search methodology determines the most likely sent symbols without analyzing

all possible sent symbols. It is this property of the tree search methods which makes them

interesting for implementation of an efficient MIMO detection and forms the basis of this

work. A detailed description of tree search based MIMO detection is given in the following

chapters.

2.3.4 Successive Interference Cancellation

Successive interference cancellation (SIC) [Zim07] is a simple approach to find the symbols

for equation (2.8) with minimum computational effort. In this case detection takes place

successively layer by layer estimating the transmitted symbols sequentially. The interfer-

ence from already detected layers is removed from the received signal before detecting the

next layer. This continues until all symbols x̂SIC have been detected. There are a num-

ber of different approaches for the implementation of the SIC detection. As part of this

work, it is included as a reference for tree search based detection and is therefore realized

with similar processing steps as the tree search. Further details can be found in standard

literature.

2.4 Conclusion

In this chapter an overview of the used system model and MIMO detection methods to-

gether with their performance and complexity is provided. For ML detection the com-
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plexity grows exponentially with the number of transmit antennas and even for flat fading

channels it is prohibitively complex at higher modulation order. On the other hand, low

complexity linear detectors are less robust and suffer from noise enhancement. Iterative

detection↔decoding offers the best complexity-performance tradeoff and is therefore used

for MIMO detection in this work. The complexity of calculating soft-output in iterative

detection↔decoding can be greatly reduced using MaxLogAPP.


