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Abstract 
The requirement of high-quality image compression methods is becoming more and more 

critical with the flourishing of multimedia applications. The development of the cellular 

computing, e.g. cellular automata (CA), Cellular Neural Networks (CNN), in the past few 

decades has revealed various feasibility to implement these kinds of computational frameworks 

for signal processing. Due to their massive parallel nature, CNN have been proven well suitable 

for image processing. In this thesis, inspired by Dogaru’s work, a wavelet-based image 

compression method is proposed. The CNN paradigm is implemented in an image compression 

scheme as far as possible. In this thesis, the nonlinear dynamics and the parallel computing 

capability of CNN have been investigated. Different CNN-based algorithms of operations 

involved in the image compression have been developed. The proposed method has proven a 

comparable performance in both objective quality and the perceptual quality to that of the JPEG 

2000 standard for image compression applications where a high compression ratio is required. 

The results obtained in this thesis show that the application of a CNN-based image compression 

method can lead to a high-quality while retaining a low system complexity by taking advantage 

of the CNN paradigm. 

  



  iv 

 

 

  



  v 

 

Contents 

Nomenclature ......................................................................................................................... vii 

Chapter 1 Introduction ........................................................................................................... 1 

1.1.  Motivation .............................................................................................................. 1 

1.2.  Organization of the thesis ....................................................................................... 2 

Chapter 2 Cellular Automata and Cellular Neural Networks ............................................ 3 

2.1.  Overview of Complex Systems .............................................................................. 3 

2.2.  Cellular Automata .................................................................................................. 4 

2.3.  Cellular Neural/Nonlinear Networks ...................................................................... 7 

Chapter 3 Image Compression and Wavelet Transform ................................................... 16 

3.1.  Redundancy in Image Data ...................................................................................16 

3.2.  Classification of Image Compression Methods and Distortion Measure ..............17 

3.3.  Some Basic Image Compression Methods ............................................................18 

3.4.  Wavelet Transform ................................................................................................28 

Chapter 4 CNN-Based Image Coding Methods .................................................................. 36 

4.1.  Overview of Existing Image Coding Methods Based on CNN .............................36 

4.2.  CNN-based Image Compression Method ..............................................................39 

Chapter 5 CNN-based Wavelet Transform ......................................................................... 41 

5.1.  Wavelet Lifting Scheme ........................................................................................41 

5.2.  Lifting Scheme by CNN of 1D/2D Separable Wavelet Transform .......................46 

5.3.  Lifting Scheme by CNN of 2D non-separable Wavelet Transform ......................50 

Chapter 6 Quantization of Wavelet Coefficients ................................................................ 58 

6.1.  Statistic Characteristic of the Wavelet Coefficients ..............................................58 

6.2.  Quantization Strategy ............................................................................................60 

6.3.  Further Discussion about Wavelet Filters .............................................................64 

Chapter 7 Coding in the Low Frequency Channel ............................................................. 69 



  vi 

 

7.1.  CNN Approaches to Image Predictive Coding ......................................................69 

7.2.  Implementation ......................................................................................................79 

Chapter 8 Coding in High Frequency Channels ................................................................. 80 

8.1.  Characteristics of the Quantized Coefficients in High Frequency Channels ........80 

8.2.  Method of Codebook Generation and Optimization by CA ..................................82 

8.3.  Method of Codebook Generation Using Uncoupled CNN ....................................92 

Chapter 9 Performance Analysis ....................................................................................... 112 

9.1.  Compression Ratio ..............................................................................................113 

9.2.  Comparison to JPEG and JPEG 2000 .................................................................115 

Chapter 10 Conclusion and Outlook ................................................................................. 130 

10.1.  Conclusion .......................................................................................................130 

10.2.  Outlook ............................................................................................................131 

List of Figures ...................................................................................................................... 132 

List of Tables ........................................................................................................................ 136 

Reference .............................................................................................................................. 138 

Publication List .................................................................................................................... 148 

Curriculum Vitae................................................................................................................. 149 

 



  vii 

 

Nomenclature 

AC:  alternating current 

ADPCM: Adaptive Differential Pulse Code Modulation 
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CALIC:  Context-based, Adaptive, Lossless Image codec 
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CNN:   Cellular Neural Networks 
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PDE:   partial differential equation 
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PSNR:   peak signal-to-noise ratio 
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RD-CNN:  reaction-diffusion CNN 

SNR:   signal-to-noise ratio 

SOFM:   self-organizing feature map 

STFT:   Short Time Fourier Transform 

VQ:   vector quantization 

WFT:   Windowed Fourier transform 

WHF:   Walsh-Hadamard transform 

2D:   two dimensional 

A:   feedback synapses in CNN 

B:   control/ feed-forward synapses in CNN 

Bior:   biorthogonal wavelet 

iid:   independent and identically distributed random variable with zero-mean 

Round(∙):  rounding function 

x:   state of CNN 

y:   output of CNN 

u:   input of CNN 

z:   bias value in CNN 

ψ(t):   mother wavelet 

φ(.):  activation function in neural networks 

▽2:   Laplacian operator 

⊕:   xor (exclusive or) operation



 

 

Chapter 1 

Introduction 

1.1. Motivation 

Cellular Neural Networks/ Cellular Nonlinear Networks (CNN), developed in the end of the 

1980s by L. Chua and L. Yang, were the results of advances in the development of Cellular 

Automata (CA) and neural networks. The CNN paradigm serves not only as a parallel 

computing framework, but also as a kind of neural networks. As a circuit-oriented architecture, 

CNN have been considered for circuit implementation since the very beginning. Due to their 

massive parallel nature, CNN have been proven well suitable for image processing. In the last 

few years, plenty of works of image processing have been made by means of CNN, on the other 

hand, investigations on using CNN for image compression are still relatively rare. 

Dogaru et al. introduced a vector quantization-based image compression method [Dog06] 

where the codebook is generated as emergent patterns of CA/ CNN. Even though this method 

is unsuitable for practical application due to the low compression ratio and performance, their 

attempt enlightened a feasibility of using the complex phenomena, e.g. emergent patterns, for 

image compression. 

In this thesis, Dogaru’s work should be firstly analysed in detail.  A more efficient CNN-based 

image compression method should be developed. In the coding process, the coding image, 

represented initially in spatial domain, should be represented by different independent 

frequency components by considering a wavelet transform. Therefore, a CNN-based algorithm 

for 2D wavelet transform should be developed. The obtained wavelet coefficients should be 

quantized. Regarding the statistic characteristics of the coefficients in different frequency 

channels, distinctive quantization strategies should be proposed. Correspondingly, quantized 

wavelet coefficients in different frequency channels should be encoded by applying different 

strategies. The coefficients in a low frequency channel should be coded with high accuracy as 

far as possible. A CNN-based lossless coding method should be developed. The quantized 

coefficients in the high frequency channels could be coded by performing a vector quantization. 

A CNN-based codebook generation method should be developed. 
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The aim of this thesis is to prove the feasibility of implementing CNN methods in image coding. 

A CNN-based image compression scheme exploiting the dynamics of the parallel CNN 

computing structure should be developed. Computational intensive operations involved in an 

image compression process should be realized by CNN calculations as far as possible. The 

performance of the proposed method should be comparable to the modern image compression 

standard, i.e. the JPEG 2000 (much better than the JPEG standard). By taking advantage of 

CNN dynamics, the computing complexity of coding systems to be developed should be 

reduced significantly as compared to conventional systems. 

1.2. Organization of the thesis 

In this thesis, firstly the concepts of CA and CNN in chapter 2 will be presented. Subsequently, 

in chapter 3 the theory of image compression and wavelet transform will be introduced, and 

different kinds of image compression techniques will be described. In chapter 4, Dogaru’s 

method will be reviewed and an overview of the coding methods to be developed will be given.  

The method of computing a wavelet transform on a CNN platform will be discussed in detail 

in chapter 5. The quantization strategy is explained in chapter 6. In chapter 7 and 8, coding 

methods for quantized coefficients in the low and high frequency channels are discussed in 

extenso. An evaluation of the performance of the proposed method in this thesis and a 

comparison to results obtained by applying modern compression standards will be given in 

chapter 9. In the last chapter, conclusions and perspectives will be outlined. 



 

 

Chapter 2 

Cellular Automata and Cellular 

Neural Networks 

2.1. Overview of Complex Systems 

As a new scientific discipline complex systems have been intensively investigated in recent 

years. The interaction between elements, parts and the entire system is the foundation of 

complex systems. The primary topic in the research on complex systems is how the complexity 

of the entire system is associated with the complexity of the parts [Bar03]. 

From empirical observation, three cases of the relationship about the complexity of the whole 

system to the individual parts can be summarized [Hal08]. 

One case is that a system having complicated collective behaviour is composed of parts, which 

have complicated behaviour as well. It is intuitive that a collection of parts with complicated 

behaviour would result into a complex system. 

The second case is that a system having complex collective behaviour is composed of parts, 

which have simple behaviour yet. In such a system, the collective behaviour of entire system is 

more than the sum of individual behaviours of their parts, and thus the behaviour of the whole 

system is difficult to expect. This system is said to have emergent complexity [Cor02]. There 

exist a huge number of instances of this kind of systems in the real world. The understanding, 

modelling and simulation of these systems have a special meaning for the research on complex 

systems [Bar03]. Therefore, the investigation of emergent complexity draws a great deal of 

attention.  

The third case is that a system is composed of parts with complex behaviour while shows simple 

collective behaviours. This system is called to have emergent simplicity.  
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2.2. Cellular Automata 

As mentioned in the above section, the concept of emergent simplicity/ complexity is 

fundamental in the field of complex systems. Cellular automata (CA) provide an approach to 

model and demonstrate the phenomena of emergent complexity. The essential element of CA 

is called cell. Each cell is located on a regular spatial grid and has a finite number of states. The 

cell-to-cell influence relies upon local interactions. An initial state (at time t=0) is assigned to 

each cell. The states of the cells evolve according to particular fixed rule. Typically, the 

evolving rule is identical for each cell, remains invariant over time, and is applied to the whole 

cells simultaneously (space/ time-invariant). Both space and time are discretized. 

The concept of CA traces back to the 1940s, when it was introduced by John von Neumann and 

Stanislaw Ulam. The first system of CA was developed by John von Neumann to build a self-

replicating machine [Neu51], [Neu66]. In the work of Stanislaw Ulam, graphical constructions 

on the evolution of states governed by simple rules were presented. It was noticed that the state 

updating rule of CA allows to generate complex and graceful patterns and that some of these 

patterns could self-reproduce. Extremely simple rules permit to create very complex patterns 

[Ulm50]. 

In the 1970s, the research in CA received an enormous boost in popularity thanks to the 

introduction of the Game of Life, a two-dimensional CA developed by John Horton Conway 

[Gar70]. It has been proven that the Game of Life can emulate a universal Turing machine and 

thus, it has the capability of universal computation. In later years, an increasing number of CA 

applications to applied sciences were investigated [Sch08]. 

Another monumental work of CA is made by Stephen Wolfram. In his work A New Kind of 

Science, he argued that “the discoveries in the field of CA are not isolated mathematical 

artefacts but have significance for all disciplines of science” [Wof02].  

Stephen Wolfram named the one-dimensional CA as elementary CA, where there are two 

possible states (usually labelled as 0 and 1) and the rule to determine the state of a cell in the 

next generation depends only on the current state of the cell and of its two immediate neighbours. 

The cell and its two neighbours build a three cell-neighbourhood. There are totally 23=8 

possible patterns for a neighbourhood. These eight possible patterns have then 28=256 possible 

rules. 

neighbourhood 111 110 101 100 011 010 001 000 
G g7 g6 g5 g4 g3 g2 g1 g0 

Table 2.1: General rule of one-dimensional CA 

The general rule of one-dimensional CA is given in Table 2.1. For each possible pattern for a 

neighbourhood, the state of the middle cell in the next generation is denoted as gi. With the 

definition G = [g7, g6 …g0], G is a binary string, often represented as a decimal number, denoted 

ID. Each rule of the CA can be denoted as Rule ID. 
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Stephen Wolfram sorted the CA into four classes according to their complexity of behaviour 

[Wof02]. Some examples are shown in Figure 2.1, where each example gives a two-

dimensional representation of the evolution of a CA. The top row corresponds to the initial state, 

which is a uniformly random pattern. The evolution over the following 255 steps is displayed 

in row 2 to 256. 

Class 1: Independent of initial state of cells, nearly all cells evolve quickly into a stable, 

homogeneous state. No randomness can be found. From the examples in Figure 2.1, with Rule 

0, 160 and 168, even beginning from a random pattern, after a small number of steps, all random 

patterns disappear. 

Class 2: Nearly all cells evolve quickly into stable (e.g. Rule 4, 232 in Figure 2.1) or oscillating 

(e.g. Rule 108 in Figure 2.1) state.  

Class 3: Nearly all cells evolve in a pseudo-random or chaotic manner. Any stable structure is 

quickly destroyed by the surrounding noise. 

Class 4: Nearly all cells advance into structures that interact in a manner, with the local 

structures that can continue for a long time. 

   

Examples of class 1: Rule 0 160 168 

   

Examples of class 2: Rule 4 108 232 
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Examples of class 3: Rule 22 30 150 

 

Examples of class 4: Rule 110 

Figure 2.1: Four classes of CA (images are generated by Matlab) 

Wolfram’s work on CA [Wof02] is mainly based on some empirical observations from 

computer simulations, while Leon Chua presented a comprehensive mathematical analysis. In 

his works [Chu06] [Chu07] [Chu09] [Chu11] [Chu12] [Chu13], by introducing concepts of 

nonlinear dynamics and attractors, some fuzzy concepts in Wolfram’s work can be defined and 

justified through mathematical analysis. The local rule of CA expressed as a true table in 

Wolfram’s work are mapped into scalar ordinary differential equations. Hence, the collective 

behaviour of CA can be analysed by applying methods in the theory of nonlinear differential 

equations instead of empirical observations. 

When the spatial structure of CA extends to two-dimensions, with the increasing number of 

involved cells, the behaviour becomes more complicated. There are many possible 

neighbourhood structures. Two of the most common are a von Neumann neighbourhood and a 

Moore neighbourhood (see Figure 2.2, 3ൈ3 neighbouring structure, the state of the circled cell 

depends on state values of the grey cells). 

 

Figure 2.2: Von-Neumann and Moore neighbourhood 
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In two-dimensional case, the number of possible CA becomes incredibly huge 

(232=4294967296 with von Neumann neighbourhood and 2512=1.34 ൈ 10154 with Moore 

neighbourhood), hence a thorough exploration of the two-dimensional CA properties is 

realistically unfeasible. 

A particular type of CA is the totalistic CA. The next state of a cell relies on the sum of the 

states of its neighbouring cells. If its current state is considered additionally, then the CA are 

properly called outer-totalistic, or semi-totalistic. Game of Life is an example of an outer-

totalistic with binary state values. Similar to the definition of the general rule in one-

dimensional CA in Table 2.1, the general rule of semi-totalistic CA can be given as shown in 

Table 2.2. 

G g9 g8 g7 g6 g5 g4 g3 g2 g1 g0

α 4 3 2 1 0 4 3 2 1 0
β 1 1 1 1 1 0 0 0 0 0

Table 2.2: Rule of semi-totalistic CA (considering only binary valued neighbourhood) 

α denotes the sum of the states of the neighbouring cells, β is the current state of the central cell. 

G = [g9,g8,…g0] is a binary string, often represented as a decimal number, denoted ID. For semi-

totalistic CA with a von Neumann neighbourhood, there are totally five possible values of α 

and two states of β, hence ten possible combinations of α and β altogether. These ten possible 

combinations have then 210=1024 possible rules, therefore, the value of the ID ranges between 

0 and 1023. 

All the above CA are called deterministic since the state of a cell can be uniquely determined 

by the states of the neighbouring cells through some predefined rules. As an important extension, 

in stochastic or probabilistic/random CA, the updating rule of these CA is stochastic, i.e. the 

next state of a cell is chosen according to some probability distribution of a random experiment. 

The state updating rule of a cell depends on the product of the state probability of neighbouring 

cells. Despite the simplicity of the updating rules in stochastic CA complex behaviour e.g. self-

organization may emerge [Gac86], [Gut91]. 

Due to the extreme simplicity of construction and abundant emergent complexity, CA are often 

considered in the analysis and modelling of complex systems. A large number of CA 

implementations are addressing simulations of phenomena in biology, chemistry, physics and 

economics. Some classical models based on CA were proposed, e.g., Lovelock’s Daisyworld 

model in ecology [Ack03], disease spreading model in Epidemiology [Fu04], [Mag04], forest 

fire model [Kar97], [Cho98], plant infection model [Sch95], [Har94] etc. 

2.3. Cellular Neural/Nonlinear Networks 

Before the introduction of Cellular Neural/Nonlinear Networks (CNN), it is helpful to review 

the concept of neural networks shortly. 
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2.3.1 Neural Networks 

The term neural networks is often referred to artificial neural networks that are inspired by 

biological neural systems. 

 

Figure 2.3: Neuron taken from （image taken from [htt00]) 

 

Figure 2.4: Mechanism of synaptic dynamics (reproduced, image taken from [htt01]) 

In biological neural systems, the fundamental information processing unit is called neuron or 

nerve cell shown in Figure 2.3. A neuron consists of dendrites (inputs), a cell body and an axon 

(output). There are usually more than one dendrites in the neuron, while there is only one axon. 

Synapses are the junctions where neurons pass signals to other neurons, or muscle cells [Lod07]. 

A neuron receives inputs from other neurons. Once the total sum of inputs exceeds a critical 

level (threshold), the neuron discharges an electrical pulse called spike that is transferred from 

the axon to the next neuron via a synaptic path. An illustration of the mechanism of synaptic 

dynamics is shown in Figure 2.4  

Inspired by the above described mechanism of the signal processing in a biological neuron, a 

simplified model, which takes only a few features of each neuron and some neuron-to-neuron 

interactions into account, was designed. 

Neural networks are a form of multiprocessor computing systems, characterized by [htt02] 

 simple processing units, 
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 a high degree of interconnection, and 

 adaptive interaction between units. 

The first mathematical model of neural networks was developed by W. McCulloch and W. Pitts 

in 1943 [McC43]. 

 

Figure 2.5: Artificial neuron 

In an artificial neuron (see Figure 2.5), there are m+1 inputs x0, x1 … xm and weight w0, w1,.. 

wm. The value +1 is assigned to input x0 and wk0 is a bias value b. The output of the kth neuron 

is calculated as 

  
0

( ) ,
m

k k kj j
j

y v w x 


 
   

 
                (2.1) 

where φ is an activation function, which could have a number of forms, e.g. a step function, a 

linear function, a sigmoid function and so on. 

There are various kinds of neural networks, which can be roughly classified into 

 Feed-forward networks: signals flow only one way (from input to output). No feedbacks 

(loops) exist.  

 Feed-back networks (recurrent networks): signals can flow in both directions by 

introducing loops in the network. The dynamic of feed-back networks could be extremely 

complicated. Their state evolves continuously from an initial state until reaching an 

equilibrium point. If the inputs are changed later, the networks shall resume evolution until 

a new equilibrium point is reached. 

The simplest neural network is called perceptron originally proposed by F. Rosenblatt in 1958 

[Ros62]; it is formed by a single layer of neurons. A perceptron is a feed-forward model: all the 

inputs are fed into the neurons, and then processed before being transferred to the output. 

A perceptron consists of one layer of neurons only. The output obtained by Eq. 2.1 is a function 

of a linear combination of inputs and thus a perceptron can solve linearly separable problems 

barely. Hence, the computation capability is limited. A more powerful form of a feed-forward 

neural network is a system of neurons, which are distributed in different layers. This type of 

neural network is called multilayer perceptron shown in Figure 2.6. In this kind of networks, 

the neurons that receive inputs build up an input layer, while the neurons generating final 

∑ φ (.) 

x0=+1

x1

x2

xm

vk yk

wk0=b
k

wk1

wk2

wkm
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outputs of the overall network construct an output layer. Between the input and output layer, 

the middle layers are named as hidden layers. 

 

Figure 2.6: Model of multilayer perceptron 

From Figure 2.6, it is apparent that each neuron in one layer has connections to all the neurons 

in the next layer (full-connection).  

Being an adaptive system, a neural network possesses a configurable internal structure, which 

may be varied by adjusting the weights of the connections between the neurons. This property 

is the basis of the learning ability of neural networks. There are several strategies for learning. 

Theoretical results indicate that, a network shown in Figure 2.6 can approximate any function 

to any required degree of accuracy, provided that it contains an adequate number of hidden 

units [Hay08]. This makes neural networks very useful in the field of artificial intelligence. 

Many applications based on neural networks have been developed, e.g. pattern recognition, 

time series prediction, signal processing, control, anomaly detection and so on. [Zha00] [Rot90] 

[Sap09] [Don95]. 

2.3.2 CNN Paradigm 

The concept of Cellular Neural/ Nonlinear Networks were firstly introduced by L. Chua and L. 

Yang in 1988 [Chu88]. According to a later given definition of Chua: “A CNN is any spatial 

arrangement of locally-coupled cells, where each cell is a dynamical system that has an input, 

an output and a state evolving in accordance with some prescribed dynamical laws” [Chu98]. 

For an isolated cell in a two-dimensional CNN, the general form of a dynamical law can be 

written as 

( , , ).ij ij ij ijx f x u z      (2.2) 

A basic model of a CNN by introducing coupling to the neighbourhood cells, which is called a 

standard CNN, can be defined by 

( , ; , ) ( , ; , ) ,
ij ij

ij ij kl kl ij
kl S (r) kl S (r)

x x A i j k l y B i j k l u z
 

                   (2.3a) 

Input layer Output
layer

Hidden layer 
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1
( ) (| 1| | 1|),

2
1, 2, , , 1, 2, , .

ij ij ij ijy f x x x

i M j N

    

  

              (2.3b) 

where xij, uij, yij and zij are state, input, output and threshold (offset) of a cell Cij, respectively 

A(i,j;k,l) and B(i,j;k,l) are called feedback and input synaptic operator (weight functions). Each 

CNN cell Cij is coupled locally only to the neighbour cells that are inside a prescribed sphere 

of influence Sij(r) of radius r, where 

( ) { : max(| |,| ) ,1 ,1 }ij klS r C k i l j r k M l N           (2.4) 

In the general case, A(i,j;k,l), B(i,j;k,l) and zij could change with their position (i,j) and time. In 

most widely used standard CNN with linear coupling, A(i,j;k,l), B(i,j;k,l) and zij are space and 

time invariant (translation invariant). Hence, A(i,j;k,l) and B(i,j;k,l) are simplified into akl and 

bkl respectively, only a 3ൈ3 neighbourhood is considered and then CNN is defined as 

,
ij ij

ij ij kl kl kl kl
kl S (r) kl S (r)

x x a y b u z
 

                    (2.5) 

where akl and bkl are scalars called feedback and input synaptic weights. Above standard CNN 

is uniquely defined by 19 real numbers (r=1, a uniform bias zij=z, nine feedback synaptic 

weights akl, and nine input synaptic weights bkl). These 19 real numbers are named as CNN 

template or CNN gene.  

In Eq. 2.3b, the output function yij=f(xij) is a piecewise linear function (see Figure 2.7), but any 

function from a large family of sigmoid functions can be assumed instead (see Figure 2.8). 

 

Figure 2.7: Output function (piecewise linear form in Eq. 2.3b) 

 

Figure 2.8: Sigmoid functions 
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CNN were designed as a circuit-oriented architecture since their first introduction in the late 

1980s. In [Chu88], a cells circuit of a standard CNN, corresponding to the state equation in Eq. 

2.3 and the data flow chart in Figure 2.9, as shown in Figure 2.10 is introduced. In this circuit, 

C denotes a linear capacitor; Rx denotes linear resistor; I denotes an independent current source; 

Ixu(i, j; k, 1) and Ixy(i, j; k, l) are linear voltage-controlled current sources with the characteristics 

Ixy(i, j; k, l) =  A(i, j; k, l) and Ixu(i, j; k, l) = B(i, j; k, l) for each cell in the neighbourhood; Iyx = 

(l/Ry)f( vxij) is a piecewise-linear voltage-controlled current source with its characteristic f(·) as 

shown in Eq. 2.3b; Eij is an independent voltage source. 

 

Figure 2.9: Data flow chart of CNN 

 

Figure 2.10: Circuit of a standard CNN cell (taken from [Chu88], reproduced) 

When all bkl in Eq. 2.5 are zero, i.e. the cells have no inputs, the CNN is called autonomous 

CNN. This type of CNN can exhibit various complex phenomena, e.g. pattern formation, 

autowaves and so on. If all akl are zero, except the central coefficient a00, this kind of CNN is 

named uncoupled CNN. Eq. 2.5 reduces to  
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   (2.6) 

It is observed the shape of function h(xij,wij) is only dependent on the self-feedback coefficient 

aij and the offset level wij. Its final state can be explicitly determined. An exhaustive analysis to 

the final state of Eq. 2.6 is presented in [Chu98]. 

Comparing now the definition of CNN to that of CA and neural networks given in the previous 

section, CNN are closely related to those systems. CNN inherit the local connectivity and 

cellular structure from CA, thus they could be regarded as a time-continuous version of CA, in 

which the states assume continuous values and the evolution rule for the states of the cells is 

described by certain ordinary differential equations. Similar to CA, CNN can be used to prove 

theories or model some physical, biological processes. Additional, CNN were intended from 

the very beginning to be a practical signal processing paradigm. From the perspective of neural 

networks, CNN could be considered as a locally connected version of a neural network. Due to 

the fully connected structure of neural networks, their hardware realization is not easy. In fact, 

even nowadays most of the applications of neural networks are still based on software 

simulations. In contrast, the locally connected structure of CNN simplifies their hardware 

realization. 

In the standard CNN defined in Eq. 2.3, the input ukl and the output ykl of each neighbour Ckl 

are coupled by feedforward synapse bkl and feedback synapse akl respectively. Here the 

weighted sum B(uij), A(yij) are linear combinations, where 
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      (2.7) 

If generalizing the B(uij) and A(yij) to polynomial functions, the so-called polynomial type CNN 

can be defined with: 
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   (2.8) 

This kind of CNN was firstly introduced in [Puf96] and the stability was analysed in [Cor02]. 

By introducing polynomial terms, this kind of CNN can represent nonlinear system in a wider 

range. It can be applied for elementary non-linearly separable problems, e.g. XOR operation 
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[Gom06], to the analysis of human brain activity, e.g. the epilepsy seizures prediction problem 

[Nie05]. 

For some applications, a discrete time version CNN can be useful. A. Nossek introduced the 

Discrete-Time Cellular Neural Networks (DT-CNN). A translation-invariant DT-CNN is 

defined as [Har92]: 
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   (2.9) 

CNN hardware 

The motivation of the CNN invention was to develop a more practical network architecture to 

replace fully connected classical neural networks, which can be hardly realized in hardware. 

The number of wires and circuitry used to connect each cell to every other cells in a fully-

connected neural network increases dramatically with the number of cells. In contrast, thanks 

to the local connected structure, in CNN, the calculation and interconnection exist only within 

a prescribed sphere of influence [Chu88] [Chu98]. Thus a CNN is conceptually suitable for 

hardware implementation. 

Analog-input analog-output CNN chips called CNN universal machine chips (CNN Universal 

Machine, abbr. CNN-UM) have been developed over the years [Ros93] [Ros00]. A series of 

CNN templates organized as a CNN subroutine can be executed on the chip with an incredibly 

high speed. One of the first CNN-UM chips was the ACE400 composed of 20ൈ22 cells 

[Dom97]. After that, the second generation the ACE4k chip with a resolution of 64ൈ64 cells 

has been developed [Lil00]. In 2003, a new generation the ACE16k with 128ൈ128 cells has 

been released [Lin02]. In recent years, a number of CNN-based visual analog processors have 

been realized, such as Q-Eye [Rod08], MIPA 4K [Poi09] and VISCUBE [Zar10].  

All above introduced CNN-UM chips are ASICs (Application Specific Integrated Circuit), 

another possibility of CNN hardware realization is using an FPGA platform. Due to the 

considerable flexibility of FPGA solutions, an FPGA-based CNN implementations draw more 

and more attention. In [Nag03] an emulated digital multilayer CNN-UM chip architecture 

called Falcon was introduced by Z. Nagy and P. Szolgay. In recent years, some work about 

more general type of CNN on FPGA platform have been developed by J. Mueller et al. in 

[Mul12] [Bra13]. N.Yildiz et al. proposed a fully pipelined Real-Time CNN architecture 

implemented on FPGA platform capable of processing full-HD video streams [Yil14]. G. 

Borgese et al. presented a DCMARK system based on CNN paradigm used to investigate 

complex physical dynamics by solving partial differential equations. The system is 

implemented on FPGA [Bor13]. 

After the launch of general purpose computing by graphics processing units (GPUs), some 

works of design a CNN simulator using GPU have been suggested [Dol09] [Her08]. 
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Thanks to the parallel nature and locally connected structure, CNN are considered to be 

appropriate for image processing especially. A large class of CNN templates have been 

developed for the image processing tasks (see [Cel07]). In this thesis, for the purpose of image 

compression, different CNN architectures are proposed and investigated. 


