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Abstract

Without doubt, network operators continuously face an inevitable increase in
mobile data traffic demand, the largest share of which will be video streaming.
Additionally, spatio-temporal traffic fluctuations cause local capacity bottlenecks in
cellular networks, which are strongly connected with rising interference levels and
worsening quality of experience. Network densification and self-organization (SON)
capabilities are considered to counteract such problems in upcoming 5G networks.
However, a large number of wireless access nodes and future smart IoT and MTC
devices render network management increasingly complex. Flow-level modeling
techniques help avoid enormous simulation effort and enhance SON solutions.

Flow-level models for interference-coupled cellular data networks are generalized
by the aspect of admission control in this thesis. A comprehensive performance
evaluation framework with respect to various key performance indicators is thereby
established. The metrics presented include the distribution of video startup delays
and the probability of video buffer starvations to address the increasing popularity
of mobile video services. The traffic demand distribution across the network is
identified as the main extrinsic factor that affects the quality of experience perceived
by single mobile users. In particular, the amount of traffic served by neighboring
base stations can have a similarly strong impact as increased traffic load in a cell.

Motivated by this, a detailed analysis of the spatial traffic distribution is carried
out based on call traces measured across a 3G network. It becomes apparent that
the traffic density can be modeled according to a log-normal distribution. An
efficient method to generate large sets of log-normally distributed and spatially
correlated traffic maps is introduced, which facilitates an effective design and a
reliable evaluation of self-organizing network algorithms if it is applied along with
the extended flow-level model. The application is illustrated by means of two
specific examples. In one example, advanced models for phased-array antennas are
combined with the flow-level model and an algorithm is proposed, which jointly
adjusts the spherical directions of multiple sub-beams per antenna for a set of base
stations in the network. It is shown that the beamforming algorithm outperforms
state-of-the-art antenna tilt optimizers in terms of cell edge throughput by a factor of
three on average. However, beamforming performance is sensitive to the traffic hot
spot size and their traffic demand intensity. In particular, the algorithm robustness
decreases as the traffic standard deviation and the correlation distance increase.
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Kurzfassung

Netzbetreiber sehen sich zunehmend mit der Erhöhung des mobilen Datenverkehrs,
wovon Video-Streaming den größten Anteil haben wird, konfrontiert. Zudem verur-
sachen räumlich-zeitliche Verkehrsschwankungen in Mobilfunknetzen lokale Kapazi-
tätsengpässe, die mit steigender Interzell-Interferenz und schlechter Nutzerqualität
einhergehen. Eine weitere Verdichtung der Netze und Fähigkeiten zu ihrer Selbstor-
ganisation werden als wichtige Aspekte der zukünftigen fünften Mobilfunkgenera-
tion angesehen, um solchen Problemen zu entgegnen. Allerdings werden Netzwerk-
managementlösungen durch die steigende Anzahl von Basisstationen und mobilen
Endgeräten, z. B. für IoT- und MTC-Anwendungen, immer komplexer. Flow-Level-
Modelle können helfen, großen Simulationsaufwand bei der Netzwerkplanung und
-selbstoptimierung zu vermeiden und Lösungen dafür zu verbessern.

In dieser Arbeit wird ein Flow-Level-Modell für Interferenz-gekoppelte, zellulare
Mobilfunknetze durch den Aspekt der Zugangskontrolle verallgemeinert, sodass sich
ein umfangreiches Werkzeug zur Bewertung solcher Netze hinsichtlich vieler Perfor-
manzmetriken ergibt. Solche Metriken umfassen beispielsweise die Verzögerungen
der Videowiedergabe und die Wahrscheinlichkeit, dass der Videopuffer am Endgerät
leer läuft. Die Datenverkehrsnachfrage wird als größter extrinsischer Einflussfaktor
hinsichtlich der durch den Nutzer empfundenen Netzqualität identifiziert.

Dies dient als Motivation, eine detaillierte Analyse der räumlichen Verkehrsverteilung
in einem 3G-Netzwerk basierend auf gemessenen Call Traces durchzuführen. Es
stellt sich heraus, dass, unter anderem, die Verkehrsdichte entsprechend einer
Lognormal-Verteilung modelliert werden kann. Darauf aufbauend wird eine ef-
fiziente Methode entwickelt, um lognormal-verteilte und räumlich korrelierte
Verkehrskarten zu generieren, welche, zusammen mit dem Flow-Level-Modell, ein
effektives Design und eine zuverlässige Evaluierung von Netzoptimierungsalgorith-
men ermöglicht. Dies wird anhand zweier Beispiele erläutert. In einem Beispiel wird
ein Modell für Phased-Array-Antennen mit dem Flow-Level-Modell kombiniert und
ein Algorithmus vorgeschlagen, welcher die Richtungen mehrerer Teilstrahlen je
Antenne für eine Gruppe von Basisstationen optimiert. Es wird gezeigt, dass dieser
Beamforming-Algorithmus herkömmlichen Antennenneigungswinkel-Optimierern
hinsichtlich des Durchsatzes am Zellrand im Durchschnitt um den Faktor drei über-
legen ist. Jedoch nimmt die Robustheit mit der Standardabweichung und dem
räumlichen Korrelationsabstand des Verkehrs ab.
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1Introduction

The subsequent paragraphs aim at highlighting the need for appropriate analytical
network and traffic models in light of current developments of the fifth generation
mobile technology (5G). In particular, we stress the importance of a mapping be-
tween technical metrics and quality of experience-related (QoE) ones in the context
of the limited-capacity problem due to the tremendous increase of traffic demand.
An outline of the thesis and literature recommendations follow thereafter.

1.1 Motivation
Without doubt, mobile data traffic demand is going to increase considerably during
the next decade. In particular, according to [Cis] the traffic volume generated by
mobile devices will increase by a factor of eight between 2015 and 2020. As of 2020
smart phones will account for four-fifths of the demand and 4G (Fourth Generation
Mobile Communications Systems) traffic will hold a the largest share of the total
mobile data traffic demand. In addition, mobile video traffic demand will increase
by a factor of 11 between 2015 and 2020 ultimately accounting for about 75 % of
the entire demand in 2020.

Cellular networks are and will remain capacity-limited as a result of the ever-
increasing traffic demand. Limited capacity generally relates to highly loaded and,
in the context of modern cellular frequency-reuse-one networks, to interference-
limited systems rather than noise-limited systems. In addition, because mobile
data traffic is likely to fluctuate over time and space [RBK14], limited capacity
and inter-cell interference are anything but static phenomena, neither in space
nor in time. As a consequence thereof and with the goal of improving the quality
of the network experienced by the users, a joint treatment of dynamic inter-cell
interference and spatio-temporal characteristics of the traffic demand is required to
be able to allocate sufficient capacity to high traffic locations.

However, sole technical metrics, such as the signal-to-interference-and-noise ratio
(SINR), are not meaningful to describe the mobile users’ quality of experience. In fact,
the relation between technical and QoE-related key performance indicators (KPIs)
is rather complex. For example, limited capacity and an increased interference
level decreases the user throughput. For mobile video users, this translates to
worse experience of buffered video streaming services (such as YouTube [Had+11]),
which is, among others, characterized through a rapid increase of the so-called
video startup delay (the time between initiating the transfer of the video data and
the actual playback). It has been found in [KS12] that video users start abandoning
the video service already if the video startup delay exceeds two seconds with an
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additional increase of 5.8 % of the rate of abandoning for each additional second
of the delay. Nevertheless, it is not straightforward to establish a direct relation
between interference levels and video startup delays or the rate of abandoning
mobile video services.

5G cellular networks are expected to counteract the limited-capacity problem in
the future mainly through two paradigms: (1) densification in space, for example,
by ultra-dense small cell network deployments and/or massive MIMO (multiple-
input multiple output) techniques, and (2) densification in frequency, for instance,
with novel waveform designs and/or millimeter wave (mmWave) communications,
[And+14; Bhu+14]. Spatio-temporal traffic dynamics additionally call for flexible
and adaptive network optimization algorithms that comprise self-planning, self-
optimization, and self-healing capabilities. Such algorithms are commonly referred
to as self-organizing network (SON) algorithms. For instance, a SON use case
related to the limited-capacity problem is the capacity and coverage optimization
use case, see [Scu+08; Sch+08; 3GP14] among others.

Theoretical network modeling is of great benefit for an accurate evaluation and
prediction of relevant QoE-related KPIs especially in the context of 5G developments,
such as the massive deployment of wireless access points. Based on analytical
models, network design and optimization are more effective, more efficient, and
less complex. Furthermore, the use of realistic spatial data traffic distributions
ensures a reliable evaluation of KPI statistics and an effective design of optimization
algorithms with realistic input.

The requirements of such network and traffic models are ultimately characterized
by the following four main features:

1. Scalability to extremely large and complex wireless networks that consist of
hundreds of nodes to address the spatial base station (BS) densification in 5G
networks,

2. An accurate evaluation and a reliable prediction of KPI statistics with low
computational effort for the integration with SON algorithms,

3. A paradigm shift from rather technical metrics to user-specific QoE metrics,
such as video streaming-related KPIs, and

4. The ability to capture the effects of spatio-temporally fluctuating data traffic
demand and hence dynamic inter-cell interference.

The thesis at hand provides a holistic, flexible, yet accurate performance evaluation
framework, which addresses all of the aforementioned aspects. The framework is
based on flow-level models and the notion of so-called elastic data flows. This work
also illustrates how this framework shall be used when designing (SON-)algorithms
by means of ascertained examples and in combination with realistic spatial data
traffic distributions.

2 Chapter 1 Introduction



1.2 Overview of the Thesis
This thesis is mainly divided into four parts (Chapters 2 to 5).

Chapter 2 reviews relevant prior art with respect to flow-level modeling in wireless
networks, spatial traffic modeling and model-based network optimization, and
highlights shortcomings thereof. This chapter also details the extensions and
improvements compared to prior art made in the Chapters 3 to 5.

The extension of flow-level models for interference-coupled wireless data networks
by admission control is presented in Chapter 3. This extension allows the low-
complexity computation of a large set of QoE-related KPIs, which include the video
startup-delay distribution and the video buffer starvation probability. The resulting
performance evaluation framework is generic in the sense that it can be applied to
any cellular deployment (base station positions, base station type and mix, transmit
power, antenna type, etc.) and to any arbitrary data traffic demand distribution.
The accuracy of the model is illustrated by the comparison with discrete event
simulations in a small hexagonal setup. The focus is on the impact of increased
traffic load in neighboring cells on network performance.

Because the spatial traffic distribution is the key input for the framework described
above, measured spatial traffic data is analyzed in Chapter 4. Based on the sta-
tistical results obtained through the analysis of the traffic data, a low-complexity
method is proposed to efficiently generate large sets of random spatial data traffic
maps with the same statistical characteristics. This method is explicitly helpful in
terms of comprehensive performance evaluation of SON algorithms.

The application of both, the flow-level model from Chapter 3 and the spatial traffic
model from Chapter 4, is illustrated in Chapter 5 by means of two example SON
algorithms. They are data offloading using cell range expansion (CRE) and fur-
ther enhanced inter-cell interference coordination (FeICIC), and traffic-adaptive
beamforming using phased-array antennas. In addition to the accuracy of the flow-
level model shown in Chapter 3, we further highlight its usefulness by showing
that it can be the basis for (multi-) objective optimization. More specifically, the
idea of data offloading in this thesis is to shift as much traffic as possible to more
power-efficient small cells to enhance the total network energy efficiency, a metric
that can be derived easily from flow-level KPIs presented in Chapter 3. The goal
of the coordinated beamforming algorithm is to reveal the optimization potential
of performing cell load balancing and interference reduction with adjusting the
directions of multiple sub-beams per base station. The optimization potential and
the algorithm robustness are quantified using various traffic distributions, which
are provided by the spatial traffic model introduced in Chapter 4.

Conclusions and recommendations for future work are provided in Chapter 6.

1.2 Overview of the Thesis 3



1.3 Literature Recommendations
The following chapters cover a number of diverse topics from different fields related
to wireless communications. For that reason, a list of basic literature and further
reading is provided below.

For the understanding of Chapters 2 and 3, the reader is expected to be familiar
with the basics of probability theory, stochastic processes, and queuing theory, which
can be studied using the books by Robert B. Ash [Ash70] and R. G. Gallager [Gal14].
We also recommend the books by L. Kleinrock for further reading about queuing
theory [Kle75; Kle76]. The problem of performance evaluation of interference-
coupled cellular networks is well introduced in the research paper by T. Bonald et al.
[Bon+04] and in the article by I. Siomina and D. Yuan [SY12a]. The book by G. S.
Fishman [LJ02] gives information about simulation techniques, especially discrete
event simulation, which is used for the validation of our analytical results.

Chapter 4 requires some knowledge about surface interpolation techniques and
random field theory, which can be gained from the books by G. Farin [Far02] and E.
Vanmarcke [Van10].

Network optimization techniques and SON are treated in Chapter 5. An overview
about SON can be found in the book by S. Hämäläinen et al. [HSS12]. Some details
about the particular optimization problems using data offloading in heterogeneous
networks and three-dimensional beamforming can be found in the articles by A.
Aijaz et al. [AAA13] and by H. Halbauer et al. [Hal+13], respectively.
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2An Overview of Flow-Level &
Spatial Traffic Models

Before we review state-of-the-art flow-level and spatial traffic models, we character-
ize flow-level modeling in the context of wireless network performance evaluation.
In general, performance evaluation can be carried out through simulations (mainly
categorized into dynamic system level simulations, discrete event simulations, and
Monte Carlo simulations), or through the use of analytical network models and
tools (main approaches are flow-level modeling and stochastic geometry), see
Table 2.1.

Tab. 2.1. Overview of System Models and Simulation Approaches

System
level

simulation

Discrete
event

simulation

Flow-level
models

Monte
Carlo

simulation

Stochastic
geometry

Emulate dynamics yes yes yes limited no

Computational
efficiency

– – 1 – ++ – ++

Scalability – – – ++ + ++

Flexibility (specific
scenarios)

++ + + + – –

Accuracy ++ + + – –

Applicability to
SON

– – – – + – –

1 – – very low, – low, + high, ++ very high

Discrete event simulations and flow-level models form one group where the dynamic
behavior of network elements and users is emulated. Since the evaluation of the
dynamic behavior is costly in terms of computational effort, the aforementioned
tools are associated with a less elaborate consideration of link-level aspects. In
contrast, Monte Carlo simulations and stochastic geometry attempt to characterize
the static network behavior by taking into account snapshots of the network’s
state, which are characterized by, for example, the number and positions of users
in Monte Carlo simulations. Or they aim at obtaining KPI statistics of random
deployments and/or user distributions by, for example, modeling their positions
as Poisson Point Processes in stochastic geometric approaches. Dynamic system
level simulations form another group, in which specific architectural or algorithmic
aspects are emulated in minute detail. Simulation approaches usually exhibit a
remarkable computational effort since a lot of events (system level simulation,
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discrete event simulation) or user drops (Monte Carlo simulation) are necessary
to obtain entire KPI statistics reliably. The computational effort is also the reason
why simulations poorly scale with the number of wireless nodes, that are base
stations (BSs) and user terminals. Low scalability is especially the case for system
level simulations, in which the entire Open Systems Interconnection (OSI) protocol
stack (or many parts of it) is emulated. However, the flexibility of simulation
approaches is high with respect to environmental conditions, such as user or traffic
distributions, or with respect to architectural aspects, such as complex algorithms
or BS deployments. This flexibility facilitates an accurate performance evaluation if
the statistical validity is ensured. Stochastic geometry appears to be an attractive
solution to evaluate the performance of arbitrarily large networks analytically and
therefore with low computational effort. Nonetheless, the flexibility of this approach
is limited. For instance, finding analytical expressions for relevant KPIs considering
arbitrary user or BS distributions may become very cumbersome. An analysis is
often possible only in very specific cases, such as uniform distributions of nodes.

Flow-level models can be seen as the analytical counterpart of discrete event
simulations. They are considered to be a powerful tool to describe the dynamics
of Internet traffic [Rob01] in wired and wireless systems since 2001. Flow-level
modeling is based on queuing theory and aims at deriving analytical expressions
for a wide range of KPIs, such as the so-called flow sojourn time or the mean
number of concurrent flows per server. Flow-level models combine the benefits of
mathematical solutions, low computational effort and a scalability with the number
of network elements, and the advantages of discrete event simulations, flexibility
and accuracy. Moreover, arbitrary BS deployments and spatial traffic or user
distributions (see Section 2.2) can be considered, which constitutes a fundamental
advantage over approaches using stochastic geometry. Flexibility, accuracy, and
computational efficiency make flow-level models very attractive for the integration
with SON algorithms, see Section 2.3. In what follows, we further sub-divide
flow-level models into categories, namely unbounded versus bounded and isolated
versus interference-coupled systems. Interference-coupled systems are of particular
importance to modern cellular network performance evaluation.

2.1 Flow-Level Models for Cellular Networks
Since the mathematical analysis of performance at the Internet Protocol (IP) packet
layer or user session layer is rather intricate, the notion of so-called data flows
[Rob01; Fre+01] has become established for modeling and quantifying the per-
formance of packet-switched networks in the last fifteen years. A data flow is a
set of IP packets that belong to specific objects, such as a web page, an Email, a
video stream, etc. A user usually initiates multiple data flows during one session.
As a result thereof, a session is characterized by a number of consecutive data flows
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and a so-called thinking time between the flows. The scientific field of flow-level
models is very broad in general and very diverse in terms of its applications. For
instance, the research community distinguishes between elastic data flows, the data
rate of which adapts to the available bandwidth or channel conditions, and live
streaming flows with strict and fixed bandwidth requirements. Here we focus on
flow-level models applied in a wireless network context, more specifically adapted
to cellular data networks, and consider elastic data traffic only, which includes
buffered streaming as well.

The tool set for characterizing the performance at flow level is queuing theory. In
the wireless network context, each BS represents one server in a queuing system.
Radio resources, for example, resources in a time-frequency grid, are shared among
concurrent elastic data flows at the server. The resulting flow-level model accounts
for the dynamics of incoming data flows as well as the dynamics of the service
process, or more specifically, the presence of other data flows competing for the
same resources in a cell. The dynamics are formally modeled by a stationary
continuous-time random process tXi,t : t P R`u, which describes the number of
concurrently active flows served by BS i at each time instant t P R`, where R`
denotes the set of positive real numbers. We write Xi for this process and Xiptq for
the value it takes at time t in the remainder of this thesis.

Unbounded Isolated Systems

It is a well-known result that the steady-state probabilities πi of the random process
Xiptq P N` (N` is the set of positive integers) become

πi pxiq :“ Pr rXiptq “ xis “ p1´ ρiq ρxi
i for ρi ă 1 (2.1)

in an unbounded system with processor sharing (PS) service discipline [Kle76] and
Poissonian arrivals. The load ρi of the ith BS in Eq. (2.1) is defined as the ratio of
an arrival rate λi of flows and a service rate µi, that is ρi “ λi{µi. The probability
operator is denoted as Pr r¨s. According to Kendall’s notation [Ken53], such a
system is referred to as an M/M/1/8-PS system if in addition to exponentially
distributed inter-arrival times (Poissonian arrivals) the service time is exponentially
distributed as well. The process Xiptq is a so-called continuous-time Markov process
if the system possesses the aforementioned properties. It is characterized by the
memorylessness property, which means that the probability of a state transition is
only dependent on the current state but not on the preceding states. There exist
also other service disciplines in queuing theory, such as First-In First-Out (FIFO)
or Last-In First-Out (LIFO). However, the PS discipline is more appropriate in the
wireless context, where multiple mobiles compete for same resources and where
the mobiles are, in principle, served concurrently. In particular, the egalitarian
processor sharing (EPS) discipline is the queuing-theoretical counterpart of the

2.1 Flow-Level Models for Cellular Networks 7



λi µi

Fig. 2.1. Standard queuing system with data flow arrival rate λi (input) and service rate µi (output).

popular Round Robin scheduler, which is often implemented in practical systems
[Kle76] and mostly assumed for wireless BSs.

Fig. 2.1 depicts the common illustration of a queuing system with an arrival intensity
λi and an average service rate µi, both given in data flows per unit time. The
maximum number of concurrent flows being served by the system described above
is infinite. This means that the system is unbounded and that the number of active
data flows can grow indefinitely, in particular if λi ě µi. In this specific case, the
system is said to be unstable, which is the most common drawback of such systems
if they are operated at high load. In general, steady-state probabilities πi pxiq cannot
be computed and the derivation of KPIs fails for unstable systems.

There has been extensive work on modeling of and investigating on flow-level
dynamics of such unbounded systems in a wireless communications context. For
example, the authors in [BBP04] and [Bon05] study the impact of user mobility and
opportunistic scheduling on the performance of wireless systems, respectively. They
found, for example, that user mobility generally improves the cellular performance
at flow level. Furthermore, capacity gains of frequency reuse schemes in OFDMA
networks have been analyzed in [BH09]. A very interesting, yet mathematically
challenging, approach can be found in [CA13], where flow-level models are com-
bined with stochastic geometry to derive the distribution of the load within the
network.

Bounded Isolated Systems

Bounded Markovian systems, such as the M/M/1/Ki-EPS system, restrict the maxi-
mum number of concurrently active flows through admission control to a positive
integer Ki, such that Xiptq P t0, . . . , Kiu. If the system is full, that is Xiptq “ Ki,
any other arriving flow is not admitted service and is blocked. Therefore, bounded
systems are stable in the sense that the number of flows cannot grow indefinitely.
The generating function of the steady-state probabilities of the M/M/1/Ki-EPS
queue is given as

πipxiq :“ Pr rXiptq “ xis “

$
’’&
’’%

p1´ ρiq ρxi
i

1´ ρKi`1
i

, for λi ‰ µi,

1
Ki ` 1 , for λi “ µi.

(2.2)
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λi

µipY ptq

λjµjpY ptqq

Area of severe

Interference
coupling

inter-cell interference

BS i

BS j

Fig. 2.2. Interference-coupling between interfering BSs. The activity of BS i affects the service
rate µj of BS j and vice versa. This causes a mutual coupling among all BSs through the
interference process Y ptq.

Bounded systems have been used to study the integration of elastic and live-
streaming traffic in [BH07], and to derive the startup delay distribution and buffer
starvation probabilities of buffered streaming services in [Xu+13].

Unbounded, Interference-Coupled Systems

Dynamic inter-cell interference introduced by one BS affects the performance of
neighboring BSs in modern frequency-reuse-one wireless networks. Let tYt : t P R`u,
in short Y ptq, denote a stationary, continuous-time random vector process, the ith

element of which quantifies the interference level generated by BS i. The number
of BSs considered is denoted as N . Since the dynamics of interference directly
translate to a variation of the data rates experienced by individual users in neighbor-
ing cells and therefore to a variation of their mean service rate, we write µi pY ptqq
for the queue’s service rate. The severe impact of inter-cell interference, which
depends on the activities of the BSs, evokes a mutual coupling of the flow-level
service processes in all BSs, see Fig. 2.2.

A first attempt to jointly characterize the complex interactions of flow-level dynam-
ics, Xiptq, and inter-cell interference dynamics, Y ptq, has been made in [Bon+04].
The authors derive second-degree approximations, which are upper and lower
performance bounds of the mean number of active flows served by a BS. The simple
assumption is that interfering BSs provide maximum or minimum data rates by
experiencing either no or full interference, respectively. This assumption has two
drawbacks. Only the performance of one cell under consideration is approximated
and its own impact on the performance on surrounding BS is neglected.

Due to the increasing complexity of wireless networks and the increasing number
of nodes per unit area, studying the coupling among interfering BSs has gained
momentum again in the last four years. A detailed analytical study on the cell load
coupling through a time-averaged interference approximation has been carried out
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in [SY12a]. Studying the framework of interference function calculus in [Yat95], the
authors in [Cav+14] concluded the framework’s potential usefulness to efficiently
characterize the load distribution across BSs and other performance metrics, which
can be derived from the BS loads. However, one drawback of using interference
function calculus in the context of cellular network performance evaluation is the
assumption of time-averaged interference. Since users are served in a best-effort
manner in most OFDMA-based network technologies, such as Wifi or Long Term
Evolution (LTE), interference power experienced by users follows an on/off scheme
rather than a time-average characteristic. Let for further derivations

Xptq :“ pX1ptq, . . . , XNptqq (2.3)

denote the random vector process, which collects all BS states and describes the
state of the entire network. The authors in [FF12] make the following assumption
in order to capture the aforementioned on/off characteristic of the process Y ptq

Assumption 1 (Best effort service). If there is at least one active data flow, the
corresponding BS is said to be active. An active BS allocates all radio resources and
therefore transmits with full power, as long as all flows have been served.

Assumption 1 ultimately results in the following relation between the random
process Xptq and the interference process Y ptq

Y ptq “ sgn pXptqq . (2.4)

Since the service rate µi is a function of the interference process Y ptq and the
process Y ptq varies on the same time scale as the flow dynamics Xiptq, we have to
– in contrast to the time-averaged interference approach – consider the temporal
dynamics of both processes jointly. A two-dimensional state transition diagram
for two interference-coupled BSs is illustrated in Fig. 2.3. As can be seen, the
transition rates µp¨q from higher to lower states depend on the activity of other
BSs, that means on the fact that they serve at least one flow or not. Moreover, as
users experience different data rates depending on their location within the cell,
they represent different classes of flows. Therefore, the problem at hand relates
to performance evaluation of multi-class processor sharing queuing systems with
mutually interference-modulated service rates. The derivation of the steady-state
probabilities

πpxq :“ Pr rXptq “ xs (2.5)

of such queues appears to be extremely difficult due to the combination of the
following three facts:

1. The modulation of the service rate of some cell under consideration, that is the
variation of the external interference and hence the data rates within the cell,
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Fig. 2.3. State transition diagram for two interference-coupled BSs. The service rates µi are state-
dependent, which means that they depend on the interference scenario Y ptq “ sgn pXptqq.

happens on the same time scale as the flow dynamics (arrivals and departures
of flows) within this cell. More severely, the service rate usually changes during
the service of data flows.

2. The modulation of the service rate is experienced by all concurrently active
data flows due to the assumption of the PS service discipline. More importantly,
the modulation is experienced differently by the flows because the impact of
inter-cell interference on the data rates is stronger at the cell edge compared to
the cell center (multi-class queuing system).

3. The service rates are mutually modulated through relation (2.4).

Queuing systems with modulated service rates are rarely considered in litera-
ture and only a few analytical results for very specific systems exist, such as for
M/MM/1-FCFS (MM: Markov-modulated; FCFS: first come first served) queues,
see for instance [ZG99; MG05]. To this end, the authors in [FF12; FF13] pro-
pose a state aggregation method, in which subsets of the states are subsumed to
state aggregates to approximate the performance of interference-coupled wireless
networks with unbounded state space. Indeed, the resulting joint consideration
of the processes Xptq and Y ptq yields far more accurate results than assuming
time-averaged interference [FF13].
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Bounded Interference-Coupled Systems

So far, bounded interference-coupled systems have not been analyzed. One excep-
tion is [MK10], in which the authors propose a conservative cell load approximation
and use the Erlang-B loss formula to account for stabilization of the network and
computing blocking probabilities. Although the Erlang-B loss formula and related
M/M/c/c models (c is the number of dedicated channels, which are used by c

data flows at maximum) hold for computing blocking probabilities of voice calls
in telephone networks, such as 2G wireless networks, they are not applicable to
3G or 4G systems, in which Internet data traffic is usually transmitted through BSs
according to best-effort service disciplines, such as PS.

Impact of Flow Dynamics on Buffered Streaming Traffic Performance

Theoretical modeling of video performance in wireless networks has gained a lot
of interest in the past four years due to the increasing popularity of ubiquitous
mobile video services. For instance, the authors in [Xu+12b] model the impact
of fast fading and scheduler strategies on the distribution of playback intervals.
They conclude that QoE optimization should be carried out at the BS instead by
individual users (or through their applications). In another publication [Xu+12a],
the authors model the video playout buffer as a M/M/1 queue on packet level to
compute the exact distribution of video buffer starvation events. A first attempt to
model the impact of flow-level dynamics on startup delay distributions and buffer
starvation probabilities is made in [Xu+13]. It has been found that flow-level
dynamics predominate effects induced by fast fading and variable bitrate streaming
in bounded isolated M/M/1/Ki-EPS wireless systems.

2.2 Spatial Data Traffic Models
There exist a lot of studies on the analysis of mobile data traffic statistics already.
Many of them are based on geographical and demographical factors, see [TTG98]
among others, or theoretical approaches using point process theory, such as the
one in [MSY14]. However, the correlation of such data with actual traffic demands
is not guaranteed. Other studies, as the one presented in [Nan+13], focus on
the analysis of the temporal characteristic of data volumes downloaded through
individual BSs and extrapolate daily or weekly traffic profiles. Such profiles are
very helpful for network-wide performance evaluation with respect to, for example,
network energy efficiency. Furthermore, detailed temporal analysis of High-Speed
Downlink Packet Access (HSDPA) traffic in [Lan+12] shows that the number of
connected users and their throughput follow a characteristic daily curve and that
the arrival of users can indeed be modeled as a Poisson process. The finding that
the user arrival is Poissonian is another motivation for using the flow-level models,
in which we use the terms data flow and mobile terminal or user interchangeably.
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Spatial analysis of mobile traffic based on live-network measurements is carried out
in the publications [MRM11] and [Pau+11], in which the load distribution across
cells of a nation-wide GSM (Global System for Mobile Communications) network
and a nation-wide 3G network have been investigated, respectively. Interestingly,
the authors in [MRM11] found that the 2G cell load distributions can be modeled
by a mixture of log-normal distributions. In addition, the 2G area traffic density can
be approximated by log-normal mixture distributions [Lee+14] as well.

Based on the aforementioned insights on more realistic traffic distributions, the
authors in [LZN13; Lee+14] propose a method to efficiently generate log-normally
distributed spatial data traffic maps with the help of three parameters: the mean
and the variance of the traffic as well as a proxy parameter to control the spatial
correlation. The method relies on the exponentiation of two-dimensional Gaussian
random fields that are, according to the central limit theorem, generated through
the summation of cosines with uniformly distributed angular frequencies and phase
shifts. However, it appears to be cumbersome to control the spatial correlation via
the proxy parameter if the generation of traffic maps with a specific correlation
distance is envisaged. Furthermore, it is important to note that the spatial traffic
analysis mentioned above is based on aggregated traffic volumes measured in the
BSs. The common procedure is to distribute the traffic volumes uniformly within
the Voronoi cells generated by the BS locations. The result of this procedure is that
the spatial resolution of the maps generated is ultimately limited to the area of
macro cells.

2.3 Model-Based Network Optimization
In general, SON can be categorized into heuristic short-time scale (milliseconds to
seconds) algorithms, so-called SON use cases, or model-based medium- to long-
term (minutes to days) optimization algorithms. Heuristic approaches often focus
on the improvement of a small subset of KPIs or on the solution of specific problems,
such as reducing the number of call drops. Since different SON use cases may
operate on the same network parameters, for instance the BS transmit power, they
have to be coordinated thus leading to sub-optimal results. Algorithms that are
based on flow-level models, such as the one presented in our publication [Feh+13a],
usually operate on time-scales of several minutes to a few hours. The reasons are
that they are based on average spatial traffic distributions and that they rely on
the computation of long-term KPIs, such as the average cell load or throughput
statistics. The advantages of flow-level based network optimization are the accurate
description of KPIs as a function of network parameters, and therefore a more
reliable and effective network optimization. We briefly shed light on some related
existing work below since one aspect of this thesis is the application of flow-level
models to SON-algorithms.
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Flow Level-Based Network Optimization

Since obtaining KPIs using flow-level modeling relies on the computation of cell
loads within the coverage areas of BSs, such models are often applied to cell size
optimization [CAA12], cell load balancing [Kim+10; SY12b], or power allocation
and range assignment [YLY14] algorithms. The goal is to steer the BS loads to
enhance the fairness among users or other metrics. More advanced analytical
adaptations of the models allow for the design and analysis of more complex al-
gorithms, such as inter-cell interference coordination [CAA13], intra-site CoMP
(Coordinated Multi-Point) [KBE13], or coordinated beamforming [KBE15]. Due
to the flexibility of flow-level models, they can also be applied in multi-parameter
and multi-objective SON algorithms. For instance, joint user association and an-
tenna down-tilt optimization algorithms can be found in our publications [Kle+12;
Kle+13; Feh+14; Feh+13b]. Furthermore, joint bandwidth allocation and small
cell switching methods have been developed in [Bar+13].

Using Spatial Traffic Models for Network Optimization Performance Evaluation

Despite the availability of methods for parameterizable generation of spatial data
traffic distributions, literature generally lacks investigations on the performance
of optimization algorithms considering a wide range of spatial traffic scenarios.
Performance evaluation is mostly restricted either to uniform user distributions, to
arbitrarily chosen scenarios, or to very specific cases, such as a single traffic map
obtained in a certain city or region.

2.4 Contributions and Outline of this Thesis
This section briefly discusses the limitations and shortcomings of the aforemen-
tioned state-of-the-art solutions, from which the contributions of the thesis at
hand are derived. Related aspects that are not discussed in this work are listed
subsequently.

2.4.1 Limitations of Prior Art and Contributions Derived
The limitations of prior art and corresponding contributions are as follows:

A - Analysis of the Interference-Coupling of Unbounded EPS Systems

So far, admission control in conjunction with a detailed investigation of the effect of
inter-cell interference dynamics and PS service discipline has not been considered
yet. In fact, neglecting admission control is not realistic, since operators usually
attempt to guarantee a minimum of quality of service through admission control
for a certain percentage of the mobile users. This is especially important for
(video) streaming applications with minimum bandwidth requirements [DPR04].
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Another disadvantage of existing models for unbounded systems is that such systems
are unstable if the arrival rate in a cell exceeds the average service rate. Then
performance evaluation is impossible.

Contribution: The flow-level model from [FF12; FF13] is generalized in this
theses by the introduction of admission control at the BSs. One is thereby able to
consider interference-coupled cellular networks, the BSs of which are represented
as servers in bounded and/or unbounded queuing systems. A holistic performance
evaluation framework is presented, which includes the aforementioned extensions
and addresses a wide range of important KPIs. The derivations of the KPIs and
the numerical analysis have been published in parts in the research papers [KFF14;
Kle+16a].

B - Buffered Streaming Performance in a Single Cell

To our best knowledge, [Xu+13] is, so far, the only attempt to model and analyze
the impact of flow-level dynamics on buffered video streaming KPIs. Nevertheless,
the assumptions on the underlying network model are rather simplistic. Firstly, the
authors assume isolated cells, in which the performance is not affected by inter-cell
interference. Secondly, they assume homogeneous data rates for all concurrent
flows within the cell (single-class PS). Both assumptions limit the general validity of
the model in a wireless context considerably.

Contribution: The modeling approach in [Xu+13] is taken and generalized by
considering the impact of inter-cell interference coupling and multi-class PS on
streaming flow performance in the thesis at hand. In particular, approximations of
the startup delay distribution and video playout buffer starvation probabilities
are provided in a multi-cellular context, that is for different locations, across a cell,
and also within the entire network. The derivation of the startup delay distribution
has been published in [KF15a; KF15b].

The contributions to the aspects A and B are presented in Chapter 3.

C - Spatial Traffic Analysis based on Measured Data Volumes in BSs

So far, spatial traffic distributions have been modeled based on measured 2G and 3G
data volumes transferred through macro BSs. A common approach is to distribute
the traffic demand evenly within the BSs’ Voronoi cells. This inherently limits the
spatial resolution of the data traffic distribution to the size of macro cells. This is
particularly unfavorable for the investigation of the performance of networks with
much smaller cells, such as pico or femto cells, because traffic hot spots that could
be easily covered by small cells are hidden through the poor resolution. The work in
[LZN13; Lee+14] presents an efficient algorithm to generate spatial log-normally
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distributed data traffic demand maps. However, the authors’ model relies on the
inaccurate approach using Voronoi cells of macro BSs as described above. Another
drawback is that a correlation distance cannot be considered directly as input
variable, which makes the generation of maps with a specific correlation distance
cumbersome.

Contribution: In order to analyze and model spatial traffic distributions more
realistically and more accurately, measurements from so-called call traces from a
live 3G network, which are geo-located through different techniques, are taken.
The measurements allow for a higher spatial resolution of traffic maps, which is
mainly independent of the cell size. Data processing steps are provided to enable
an analysis of hot spot characteristics and statistical traffic distributions based
on the data measured. Furthermore, a novel method is presented for the efficient
generation of spatially correlated data traffic demand maps. In contrast to the
approach in [LZN13; Lee+14], this method considers the correlation distance as
direct input. The analysis and modeling approaches are part of Chapter 4 and
have been published in [Kle+14; KSF15].

D - Optimization Algorithm Performance for Limited Spatial Traffic Scenarios

Although many network optimization algorithms rely on realistic flow-level models
or dynamic system level simulations, the importance of spatial traffic distributions
is often neglected. More often than not, simple user or traffic distributions are
assumed for the evaluation of network optimization algorithms, such as a uniform
distribution. Statements on the algorithms’ applicability to certain environments or
about its robustness to changes in spatial traffic demand are very limited as a result
of this assumption.

Contribution: The flexibility of the generalized flow-level model (A) is illus-
trated by adapting certain modeling aspects to fit two specific algorithmic ap-
proaches in Chapter 5, namely: data offloading using so-called further enhanced
inter-cell interference coordination (FeICIC) and cell range expansion (CRE), and
traffic-adaptive beamforming with phased-array antennas. Furthermore, the spa-
tial traffic model from C is applied to the beamforming approach to ensure a
performance evaluation with realistic traffic distributions under a wide range
of settings, such as the mean traffic, hot spot intensity, and hot spot size. The
optimization algorithms as well as recommendations to apply the spatial traffic
model have been published in [KGF14b; KGF14a; KF14; KSF15].

Chapter 6 concludes this thesis and provides recommendations for future work.

All the aforementioned extensions and contributions in their entirety form a holis-
tic performance evaluation framework, which meets the requirements listed in
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