Beiträge aus der Elektrotechnik

Sebastian Häfner

Komponenten- und Technologieentwicklung zur mikrofluidischen Abbildung einer biotechnologischen Prozesskette

Dresden 2018

Bibliografische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.dnb.de abrufbar.

Bibliographic Information published by the Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at http://dnb.dnb.de.

Zugl.: Dresden, Techn. Univ., Diss., 2018

Die vorliegende Arbeit stimmt mit dem Original der Dissertation "Komponenten- und Technologieentwicklung zur mikrofluidischen Abbildung einer biotechnologischen Prozesskette" von Sebastian Häfner überein.

© Jörg Vogt Verlag 2018 Alle Rechte vorbehalten. All rights reserved.

Gesetzt vom Autor

ISBN 978-3-95947-029-2

Jörg Vogt Verlag Niederwaldstr. 36 01277 Dresden Germany

 Phone:
 +49-(0)351-31403921

 Telefax:
 +49-(0)351-31403918

 e-mail:
 info@vogtverlag.de

 Internet :
 www.vogtverlag.de

Technische Universität Dresden

Komponenten- und Technologieentwicklung zur mikrofluidischen Abbildung einer biotechnologischen Prozesskette

M.Sc. Sebastian Häfner

von der Fakultät für Elektrotechnik und Informationstechnik der Technischen Universität Dresden

zur Erlangung des akademischen Grades

Doktoringenieur (Dr.-Ing.)

genehmigte Dissertation

Vorsitzender: Gutachter:	Prof. DrIng. habil. Gerald Gerlach Prof. DrIng. Andreas Richter Prof. Dr. rer. nat. habil. Brigitte Voit
Tag der Einreichung:	27.03.2018
Tag der Verteidigung:	08.06.2018

INHALTSVERZEICHNIS

A	bbildungsverzeichnis					XI
Ta	Tabellenverzeichnis 2					κv
A	bkür	zungsv	verzeichnis		X۷	VII
Sy	/mbo	lverze	ichnis		х	XI
A	bstra	ct		Х	X	III
Zι	ısam	menfa	ssung			1
1	Ein	leitung	g, Motivation und Zielstellung			3
	1.1	Einleit	tung			3
	1.2	Motiv	ation			4
	1.3	Zielste	ellung			5
2	Mik	rofluic	dik - Theorie und Stand der Technik			7
	2.1	Mikro	fluidik und Lebenswissenschaften			8
	2.2	Theor	etische Aspekte			9
		2.2.1	Dimensionslose Kennzahlen			9
		2.2.2	Hydrodynamischer Fluss			11
		2.2.3	Diffusion und Mischen			12
	2.3	Passiv	e mikrofluidische Komponenten			13
		2.3.1	Passive Komponenten der kontinuierlichen Mikrofluidik .			14

		2.3.2	$\label{eq:passive constraint} Passive \ Komponenten \ der \ diskontinuierlichen \ Mikrofluidik .$	16
	2.4	Plattf	ormtechnologien	19
		2.4.1	Mikropneumatik	20
		2.4.2	Zentrifugalmikrofluidik	21
		2.4.3	Elektrobenetzung/Digitale Mikrofluidik	22
	2.5	Zusan	menfassung	24
3	Aus	gewäh	lte Polymere in der Mikrofluidik	27
	3.1	Elasto	mere	28
	3.2	Thern	noplaste	28
	3.3	Hydro	gele	30
	3.4	Stimu	li-Sensitive Hydrogele	31
		3.4.1	Quellverhalten	32
		3.4.2	Quellkinetik	34
		3.4.3	Volumenphasenübergang	35
		3.4.4	Kritische Entmischungstemperatur	36
		3.4.5	Einsatz in mikrofluidischen Systemen	37
		3.4.6	Zusammenfassung	41
4	Mat	terialie	en und Methoden	43
	4.1	Mater	ialien	43
		4.1.1	Puffer	46
		4.1.2	Kulturmedien	47
	4.2	Metho	oden	47
		4.2.1	Thermisch-induzierte Polymerisation	47
		4.2.2	UV-induzierte Polymerisation	48
		4.2.3	Oberflächenfunktionalisierung	50
		4.2.4	Hydrogelcharakterisierung	50
		4.2.5	Mikrostrukturierung von Hydrogelen	53
		4.2.6	Herstellung mikrofluidischer Systeme	54
		4.2.7	Thermoplast-basierte Systeme	56

5 Charakterisierung PNIPAAm-basierter Hydrogele		akterisierung PNIPAAm-basierter Hydrogele 5	9
	5.1	PNIPAAm-Homopolymer	0
	5.2	PNIPAAm-Copolymere	2
		5.2.1 Verwendete Comonomere	3
		5.2.2 Einfluss von Puffern $\ldots \ldots 6$	4
		5.2.3 Einfluss organischer Lösungsmittel	8
		5.2.4 Zucker-sensitive PNIPAAm-Copolymere	1
	5.3	Zusammenfassung	5
6	Opt von	mierung der Fotolithografischen Mikrostrukturierung Hydrogelaktoren 75	9
	6.1	Aufbau	0
	6.2	Einfluss von Sauerstoff und UV-Quelle	2
	6.3	Optimierung des Strukturierungsprozesses	5
	6.4	Zusammenfassung	7
7	Hoo	integration von Hydrogelaktoren in mikrofluidische Systeme 8	9
	7.1	Diskussion von Integrationsmethoden und Methodenwahl $\ .\ .\ .\ .\ 9$	0
	7.2	Charakterisierung der "FlipChip" Methode 9	5
		7.2.1 Einfluss der Präparationsausbeute	5
		7.2.2 Positioniergenauigkeit der Aktoren	6
		7.2.3 Zuverlässigkeit und Funktionsausbeute 9	8
	7.3	Thermische Steuerung hoch integrierter Hydrogelaktoren $\ \ .\ .\ .\ .\ 10$	1
	7.4	Zusammenfassung	8
8	Por	n und Molekularsiebe auf Hydrogelbasis 11	1
	8.1	Konzept der chemofluidisch steuerbaren in-Chip Filter $\ldots \ldots \ldots 11$	2
	8.2	Einstellbare Mikroporen auf PNIPAAm-Basis	4
		8.2.1 Materialauswahl	5
		8.2.2 Statisches Verhalten	6

		8.2.3	Dynamisches Verhalten	119
		8.2.4	Skalierbarkeit	121
	8.3	PNIPA	AAm-Hydrogele als Molekularsiebe	123
	8.4	Zusam	menfassung	126
9	Hyd	lrogele	e als Speicherelemente	129
	9.1	Vorunt	tersuchungen	130
	9.2	Ausles	bare Speicherelemente auf PNIPAAm-Basis	131
		9.2.1	Konzept und Auswahl mikrofluidischer Designs $\ \ . \ . \ .$	132
		9.2.2	Messaufbau	135
		9.2.3	Charakterisierung der Speicherelemente	137
	9.3	Weiter	rentwicklung des Speicherkonzeptes in Hybrid plattformen	145
	9.4	Zusam	amenfassung	149
10	Ent	wicklu	ng mikrofluidischer Batch-Kultivierungssysteme	151
10	Ent 10.1	wicklu Verträ	ng mikrofluidischer Batch-Kultivierungssysteme glichkeit von Kultivierungsmedien und Hydrogelen	151 151
10	Entv 10.1 10.2	wicklur Verträ Batch-	ng mikrofluidischer Batch-Kultivierungssysteme glichkeit von Kultivierungsmedien und Hydrogelen Kultivierung von Mikroalgen	151 151 152
10	Entv 10.1 10.2	wicklur Verträ Batch- 10.2.1	ng mikrofluidischer Batch-Kultivierungssysteme glichkeit von Kultivierungsmedien und Hydrogelen Kultivierung von Mikroalgen	151 151 152 154
10	Ent [*] 10.1 10.2	wicklur Verträ Batch- 10.2.1 10.2.2	ng mikrofluidischer Batch-Kultivierungssysteme glichkeit von Kultivierungsmedien und Hydrogelen Kultivierung von Mikroalgen	151 151 152 154 155
10	Ent [*] 10.1 10.2	wicklun Verträ Batch- 10.2.1 10.2.2 Mikrof	ng mikrofluidischer Batch-Kultivierungssysteme glichkeit von Kultivierungsmedien und Hydrogelen -Kultivierung von Mikroalgen	151 151 152 154 155 157
10	Ent ^v 10.1 10.2 10.3 10.4	wicklus Verträ Batch- 10.2.1 10.2.2 Mikrof Zusam	ng mikrofluidischer Batch-Kultivierungssysteme glichkeit von Kultivierungsmedien und Hydrogelen Kultivierung von Mikroalgen	151 151 152 154 155 157 161
10	Ent [*] 10.1 10.2 10.3 10.4 Disł	wicklus Verträ Batch- 10.2.1 10.2.2 Mikrof Zusam	ng mikrofluidischer Batch-Kultivierungssysteme glichkeit von Kultivierungsmedien und Hydrogelen -Kultivierung von Mikroalgen	151 151 152 154 155 157 161 163
10 11 12	Ent [*] 10.1 10.2 10.3 10.4 Disk	wicklus Verträ Batch- 10.2.1 10.2.2 Mikrof Zusam cussion	ng mikrofluidischer Batch-Kultivierungssysteme glichkeit von Kultivierungsmedien und Hydrogelen Kultivierung von Mikroalgen	151 151 152 154 155 157 161 163 167
10 11 12 Li	Ent [*] 10.1 10.2 10.3 10.4 Dish Aus	wicklus Verträ Batch- 10.2.1 10.2.2 Mikrof Zusam cussion blick urverz	ng mikrofluidischer Batch-Kultivierungssysteme glichkeit von Kultivierungsmedien und Hydrogelen -Kultivierung von Mikroalgen	 151 . 151 . 152 . 154 . 155 . 157 . 161 163 167 171

ABBILDUNGSVERZEICHNIS

2.1	Publikationszahl	8
2.2	Mikrofluidische Mischerstrukturen	15
2.3	Passive Größenseparationstechniken	16
2.4	Geometrien zu Tröpfchengenerierung	17
2.5	T-Junction Segment dimensionen	18
2.6	Prinzip Mikropneumatik	21
2.7	Prinzip und Kräfte der Zentrifugalmikrofluidik \hdots	22
2.8	Beispiele EWOD-Plattform	23
2.9	Konfigurationen EWOD-Plattform	23
3.1	Struktur PDMS	28
3.2	Strukturierungsmethoden für Thermoplaste	29
3.3	Hydrogelarten	30
3.4	$N\mbox{-}{\rm Isopropylacrylamid}~({\rm NIPAAm})$	31
3.5	Schematischer Verlauf des Volumen-Phasenübergang	36
3.6	Prinzip eines PNIPAAm-Ventils	39
3.7	Makroskopische Analogie Temperatur Ethanol $\ .\ .\ .\ .\ .$.	40
3.8	Polymer-basierte Mikrofluid ventile und Chemofluid transistoren $% \mathcal{A} = \mathcal{A}$	41
4.1	Schema Herstellung Polymerisationslösung	48
4.2	Schema Fotolithografie von Hydrogelaktoren	54
4.3	Prozessablauf Fotolithografie	55
4.4	Prozessablauf Chipherstellung	56

4.5	Aufbau Heißprägeanlage	57
4.6	Aufbau Thermoplast-Kaltschweißen	57
5.1	Temperatursensitivität von PNIPAAm	60
5.2	Lösungsmittelsensitivität von PNIPAAm $\ .\ .\ .\ .\ .$	61
5.3	Puffereinfluss auf PNIPAAm-Copolymere	66
5.4	$\mathrm{T}_{\mathrm{VP}}\text{-}\mathrm{Verschiebung}$ von PNIPAAm-co-NA \hdots	67
5.5	Lösungsmittelsensitivitäten von PNIPAAm-Copolymere I \hdots	69
5.6	Lösungsmittelsensitivitäten von PNIPAAm-Copolymere II $\ \ .\ .\ .$.	70
5.7	Glucosesensitivität von PNIPAAm-co-BS Polymeren	71
5.8	Fructoses ensitivität von PNIPAAm-co-BS Polymeren $\ .$ $\ .$	72
5.9	Puffereinfluss auf PNIPAAm-co-BS Polymere	73
5.10	$T_{VP}\mbox{-}Verschiebung$ bei PNIPAAm-co-BS	74
6.1	Aufbau Polymerisationssetup	80
6.2	Spektrale Strahlungsintensität UV-Lampe, Emissionswellenlänge UV- Laser und Absorptionsspektrum Fotoinitiator	81
6.3	Räumliche Intensitätsverteilung verwendeter UV-Quellen $\ .\ .\ .\ .$	82
6.4	Belichtungszeit-abhängiger Quellgrad unter inert/standard Bedingungen für UV-Lampe und Laser	83
6.5	Lokale Auflösung des Polymerisationsprozesses von PNIPAAm unter verschiedenen Bedingungen	84
6.6	Quellgrad und kooperativer Diffussionskoeffizient von PNIPAAm Gelen	85
6.7	Mikrostrukturierte Hydrogelaktoren	86
7.1	Prozessbeschreibung "FlipChip" Methode	91
7.2	Fehlstellungen bei der Ausrichtung von zwei Geometrien $\ \ldots \ \ldots$	92
7.3	Positioniervorrichtung "FlipChip" Methode	93
7.4	Mikrofluidische Netzwerke mit hoch integrierten Hydrogelaktoren $\ . \ .$	97
7.5	Druckstabilität und Langzeittest	99
7.6	Ausfalltest von integrierten Ventilen	100

7.7	Mikroskopaufnahmen eines aktuierten Ventils $\ \ldots \ \ldots \ \ldots \ \ldots \ 102$
7.8	Prinzip des optoelektrothermischen Controllers
7.9	Individuelle optoelektrothermische Ansteuerung $\ .\ .\ .\ .\ .\ .\ .$ 106
7.10	Optoelektrothermische Ventilaktuation
8.1	Konzept chemofluidische Poren und Filter
8.2	Fotolithografische Batch-Fertigung von Hydrogelporen
8.3	Materialauswahl für Hydrogel poren $\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .$ 116
8.4	Mikroskopaufnahmen zirkulärer Hydrogel poren $\ \ .$
8.5	Mikroskopaufnahmen rechteckiger Hydrogelporen $\ .\ .\ .\ .\ .\ .$
8.6	Mikroskopaufnahmen kreuzförmiger Hydrogelporen $\ .\ .\ .\ .\ .$
8.7	Statisches Verhalten zirkulärer Hydrogel poren $\ .\ .\ .\ .\ .\ .$
8.8	FEM Simulation zirkuläre Pore
8.9	Statisches Verhalten rechteckiger Hydrogelporen \hdots
8.10	Statisches Verhalten kreuzförmige Hydrogelporen $\hfill \ldots \ldots \ldots \ldots \ldots 122$
8.11	Dynamisches Verhalten von Hydrogelporen
8.12	Skalierung von Mikroporen
8.13	REM-Aufnahmen gefriergetrockneter PNIPAAm-Gele \hdots
8.14	Lösungsmittelabhängige Fluoresceindiffusion in PNIPAAm-Gele $~$ 125
8.15	Einstellbare PNIPAAm-basierte Diffusionsbarrieren
8.16	PNIPAAm-Gele als Größenausschlussfilter
9.1	Voruntersuchungen zu Heterophasen-Manipulatoren 131
9.2	Simulation Scherrate Speicherelemente 133
0.2	Milmadui Jinda Desime anderland Casidan 125
9.3	Mikronuldische Designs auslesbare Speicher
9.4	Messaufbau Speicherelementcharakterisierung
9.5	Aufnahmen Messaufbau Speicherelemente
9.6	Auslesen eines Speicherelements
9.7	Auslesefunktion eines Speicherelements

9.8	Auslesefunktion von Hydrogelspeichern
9.9	Zeitverhaltens von Hydrogelspeichern
9.10	Zeitkonstanten, Quellgrad und Diffusionskoeffizient
9.11	Architektur von Hydrogelventilen
9.12	Aufbau der Hybridplattform
9.13	Steuerung der Hybridplattform
9.14	Digitale Hydrogel-basierte Mikrofluidik
10.1	PNIPAAm-co-NA Gele in Kultivierungsmedien
10.2	Makroskopische Batch-Kultivierung von Algen
10.3	Verschlusssysteme Algenkulturgefäße
10.4	Vergleich von Kultivierungsbedingungen
10.5	Mikrofluidisches Kultivierungssystem für Mikro algen $\ \ .\ .\ .\ .\ .$. 157
10.6	Mikrofluidischen Algenkultivierungskammer
10.7	Mikroskopische Aufnahme Algenbewegung
10.8	Prinzipskizze Kultivierungssystem mit Befeuchtung
10.9	Mikrofluidisches Kultivierungssystem für Hefen $\ \ldots\ \ldots\ \ldots\ \ldots\ \ldots\ 159$
10.10)Wachstumskurve einer Hefekultur
12.1	Vollpolymeres mikrofluidisches Kultivierungssystem
12.2	Konzeptskizze Hydrogelspeicher

TABELLENVERZEICHNIS

4.1	Verwendete Chemikalien und Materialien.	43
4.2	Zusammensetzung verwendeter Puffer.	46
4.3	Zusammensetzung von Algen- und Hefemedien	47
4.4	Ansatz thermisch-induzierten Hydrogel polymerisation	48
4.5	Zusammensetzung der Lösungen für UV-induzierte Polymerisation (Comon. = Comonomer)	49
5.1	Verwendete Comonomere	63
5.2	Struktur verwendeter Comonomere	65
6.1	$\mathrm{SD}_{D_{koop}}$ und $\bar{\mathrm{Q}}_m$ PNIPAAm-Homopolymeren \hdots	85
7.1	Vergleich von Integrationsmethoden für Hydrogelaktoren $\ . \ . \ .$	90
7.2	Präparationsausbeute "FlipChip" Methode.	95
7.3	Erzielte Integrationsdichten von Hydrogelaktoren $\ \ldots \ \ldots \ \ldots \ \ldots$	96
7.4	Zeitkonstanten Öffnungs- und Schließvorgang	108
9.1	Dimensionen Speicherelemente	135
9.2	Vergleich verschiedener Kanalstrukturen und Hydrogelgrößen.	140

ABKÜRZUNGSVERZEICHNIS

μTAS	Micro Total Analysis System (dt.: Mikrototalanalysesystem)
ААРТ	(3-Acrylamidopropyl)trimethylammoniumchlorid
ABTS	$2,2'\hbox{-}Azino-di-(3-ethylbenzthiazolin-6-sulfons \"aure)$
AMPS	2-Acrylamido-2-methylpropansulfonsäure
BIS	N, N'-Methylenbisacrylamid
BS	3-(Acrylamido)phenylboronsäure
bzw.	beziehungsweise
CFD	Computitional Fluid Dynamics
	(dt.: Numerische Strömungsmechanik)
CVPT	Chemical Volume Phase Transition Transistor
DLS	Dynamische Lichtstreuung
DNA	Deoxyribonucleic Acid (dt.: Desoxyribonukleinsäure)
DFR	Dry Film Resist (dt.: Trockenfilmlack)
EWOD	Electrowetting on Dielectrics (dt.: Elektrobenetzung)
FACS	Fluorescence-Activated Cell Sorting
	(dt.: Fluoreszenz-unterstützte Durchflusszytometrie)
HEMA	2-Hydroxyethylmethacrylat
HEPES	$2\-(4\-(2\-Hydroxyethyl)\-1\-piperazinyl)\-ethansulfons \ddot{a}ure$
IPN	Interpenetrierende Netzwerke

ITO	Indium-Thin-Oxid (dt.: Indium-Zinn-Oxid)
IUPAC	International Union of Pure and Applied Chemistry
KPS	Kaliumpersulfat
LCD	Liquid Crystal Display (dt.: Flüssigkristallanzeige)
LCST	Lower Critical Solution Temperature
	(dt.: untere kritische Entmischungstemperatur)
LIGA	Lithografie-Galvanik
Loc	Lab-on-a-Chip (dt.: Labor-auf-dem-Chip)
LSI	Large Scale Integration
MEMS	Mikro-Elektro-Mechanische-Systeme
MIS-CVPT	Membrane Isolated Chemical Volume Phase Transition Transistor
mVLSI	Microfluidic Very Large Scale Integration
NA	Natriumacrylat
NIPAAm	<i>N</i> -Isopropylacrylamid
NMR	Nuclear Magnetism Resonance (dt.: Kernspinresonanz)
PBS	Phosphate buffered Saline (dt.: phosphatgepufferte Salzlösung)
PCR	Polymerase Chain Reaction (dt.: Polymerase-Kettenreaktion)
PDMS	Poly(dimethylsiloxan)
PEG	${\rm Poly}(ethylenglykol) methyle thermethacrylat$
PET	Polyethylenterephthalat
PHEIC	Public Health Emergency of International Concern
PNIPAAm	$\operatorname{Poly}(N\operatorname{-Isopropylacrylamid})$
PoC	Point-of-Care (dt.: patientennahe)

PTFE	Polytetrafluorethylen	
REM	Rasterelektronenmikroskopie	
RNA	Ribonucleic Acid (dt.: Ribonukleinsäure)	
SD	Standardabweichung	
SMD	Surface-mounted device (dt.: oberflächenmontiertes Bauelement)	
TEMED	N, N, N', N'-Tetramethylethylendiamin	
T_{g}	Glasübergangstemperatur	
Tris	Tris(hydroxymethyl)-aminomethan	
$T_{\rm VP}$	Volumenphasenübergangstemperatur	
u.a.	unter anderem	
UCST	Upper Critical Solution Temperature	
	(dt.: obere kritische Entmischungstemperatur)	
V/V	Volumen/Volumen	
UV	Ultraviolett	
WHO	World Health Organization	
z.B.	zum Beispiel	

SYMBOLVERZEICHNIS

ϵ	Scherrate
η	Kinematische Viskosität
η	Dynamische Viskosität
λ	Wellenlänge
$\Pi_{\rm D}$	Quelldruck
$\Pi_{\rm E}$	Elastische Eigenschaften Polymerkette
По	Osmotischer Druck
ρ	Dichte
σ	Oberflächenspannung
τ	Zeitkonstante
А	Fläche
Ca	Kapillarzahl
$\mathrm{D}_{\mathrm{koop}}$	Kooperativer Diffusionskoeffizient
D_A	Scheinbarer Diffusionskoeffizient
D	Diffusionskoeffizient
F	Funktionsausbeute
F_{C}	Coriolis-Kraft
F_{E}	Euler-Kraft
F_{Z}	Zentrifugalkraft

G	Gibbs'sche Energie
Ι	Absorption
J	Teilchenfluss
К	Ausleseeffizienz
L	Charakteristische Dimension
$\bar{\mathrm{M}}$	Mittelwert
р	Druck
Р	Präparationsausbeute
Pe	Péclet-Zahl
$Q_{\rm m}$	Massenquellungsgrad
Т	Temperatur
V	Strömungsgeschwindigkeit
V	Volumen
V	Volumenstrom
We	Weber-Zahl
Re	Reynolds-Zahl

ABSTRACT

The biotechnology is one of the key enabling technologies of the 21st century. Due to their potentials in solving the world hunger problem, finding sustainable energy productions or cures for diseases the biotechnology has become one of the most important research areas over the last decades. In the biotechnological research microfluidic systems become more and more important because of their various advantages over conventional systems. Single cell analytic as well as high-throughput drug discovery or tissue engineering are only a few examples for microfluidics in biotechnology. With an increase in the applications also the requirements on the microfluidic systems and their functionalities increase. Normally, active elements like valves are used to solve most of the microfluidic operations, but they are not capable to address all requirements which are needed to fulfil a biotechnological process line.

The presented work attempts to set up microfluidic systems for a biotechnological process line by using micrometre actuators made of stimuli-responsive polymers. Various hydrogel types were investigated regarding their behaviour in different media. Here, it is shown that the gels' chemistry has a strong influence on the media compatibility.

The photolithagraphic process for actuator micropatterning is optimised and used in a production technique to fabricate high integrated microfluidic system for the cultivation of microorganisms.

For separation tasks of microorgansims or molecules the normally used thermal based concept to adopt hydrogel properties is changed to a chemical concept. This concept is successfully evaluated for a micropore and a molecular sieve based on hydrogels. The usage of hydrogel-based molecular sieves as matrices for (bio-)chemical reactions or as storing elements with a dispensing functionality is discussed.

ZUSAMMENFASSUNG

Die Gesellschaft des 21. Jahrhunderts steht vor den Herausforderungen der Bekämpfung des Welthungers, der Bereitstellung erneuerbarer Energien und der Behandlung schwerer Erkrankungen. Die Biotechnologie bietet das Potential zur Lösung dieser Probleme einen wesentlichen Beitrag zu leisten. Dabei gewinnen in der biotechnologischen Forschung zunehmend mikrofluidische Systeme an Bedeutung z.B. in der Einzelzellanalytik, den Hochdurchsatz-Untersuchungen oder der Gewebezüchtung. Mit steigendem Einsatzpotential erhöhen sich auch die Anforderungen, welche an die Operationsmöglichkeiten der Systeme gestellt werden. In der Regel kommen aktive Elemente wie Ventile zum Einsatz, welche eine Vielzahl an Operationen ermöglichen, nicht aber eine ganze biotechnologische Prozesskette abdecken können.

In der vorliegenden Arbeit wird der Versuch unternommen, eine biotechnologische Prozesskette mikrofluidisch abzubilden. Dabei werden Mikroaktoren genutzt, welche auf stimuli-sensitiven Hydrogelen basieren. An unterschiedlichen Hydrogelen wird der Einfluss von Prozessmedien und Puffern auf die Eigenschaften der Gele diskutiert. Es zeigt sich ein starke Abhängigkeit der Eigenschaftsänderung von der chemischen Zusammensetzung der Hydrogele.

Um hochintegrierte und reproduzierbar arbeitende Systeme herzustellen, wurde in einem ersten Schritt die Mikrostrukturierung der Hydrogele optimiert und anschließend ein Verfahren zur Fertigung von hochintegrierten mikrofluidischen Batch-Kultivierungssystemen für Mikroalgen und Hefen entwickelt.

Zur Separation von kultivierten Organismen und zur Trennung von Molekülen wird das thermische Steuerkonzept von Hydrogel-basierten Elementen hin zu einer chemischen Steuerung verändert. Der erfolgreiche Einsatz dieser Konzeptänderung wird an einer Mikropore und an Molekularsieben demonstriert. Eine Weiternutzung von Hydrogel-basierten Molekularsieben als auslesbare Molekülspeicher oder Reaktionsmatrizes wird im Rahmen eines neuen mikrofluidischen Elements diskutiert.

1 EINLEITUNG, MOTIVATION UND ZIELSTELLUNG

1.1 Einleitung

Im Jahr 2014 brach in den westafrikanischen Ländern Guinea, Liberia und Sierra Leone eine Epidemie des hämorrhagischen Fiebers Ebola aus. Am 08.08.2014 erklärte die WHO (World Health Organization) die Ebola-Epidemie zum internationalen Gesundheitsnotfall (Public Health Emergency of International Concern, PHEIC), ein Beleg dafür, dass solche Epidemien nicht nur ein großes Problem für betroffene Regionen darstellen, sondern die ganze Welt betreffen.^[1]

Von März 2014 bis März 2016 erkrankten nachweislich 28.616 Menschen an diesem Fieber, wobei für 11.310 Infizierte die Krankheit tödlich verlief.^[2] Erfolgreiche medikamentöse Behandlungen existieren für die meisten hämorrhagischen Fieber bisher nicht. Als präventive Maßnahmen gegen eine Ausbreitung solcher Epidemien, werden Menschen mit auffälligen Symptomen vor der Ausreise aus den betroffenen Gebieten zunächst unter Quarantäne gestellt und auf das Virus getestet. Eine wirksame Quarantäne für hunderte bis tausende Menschen und molekularbiologische Untersuchungen aller Betroffenen stellen u.a. Hilfsorganisationen, aber auch Diagnostik-Laboratorien vor riesige logistische und finanzielle Herausforderungen.

Nachgewiesen werden Ebola-Erkrankungen üblicherweise mittels Methoden der Polymerase-Kettenreaktion (polymerase chain reaction, PCR). Hierbei wird im Blut eines potentiell Infizierten nach der genetischen Erbinformation (Deoxyribonucleic Acid, DNA) des Erregers gesucht. Dieses Verfahren erfordert speziell ausgerüstete Laboratorien, spezielle Nachweisreagenzien und geschultes Personal, weshalb solche Tests in der Regel kostenintensiv und zeitaufwändig sind. Schnelle, einfache und mobile Testverfahren wie der Blutzucker- oder der Schwangerschaftstest sind für die Diagnose von Infektionskrankheiten wie Ebola erstrebenswert. Die Untersuchung auf Krankheitserreger könnten so dezentral vorgenommen werden und würden Quarantänezeiten verkürzen.

Die Firma Corgenix stellte 2016 den ReEBOV-Test vor, welcher nicht das genetische Material, sondern Proteine des Ebola-Virus nachweist.^[3] Der Test kommt in der Funktionsweise einem Schwangerschaftstest gleich und ist somit einfach in der Handhabung und mobil einsetzbar. Der größte Vorteil liegt jedoch in seiner Geschwindigkeit. Während ein DNA-Nachweis 12h dauern kann, liegt beim ReEBOV-Test bereits nach 15 min ein Ergebnis vor.

Die Funktionsweise des Tests beruht auf dem Prinzip des seitlichen Flusstests (lateral flow test). Eine Blutprobe des Patienten (lediglich 30 µl) wird zunächst auf das Probenpad eines immunochromatografischen Teststreifens pipettiert. Puffer, welcher sich im Teströhrchen befindet, initiiert den Transport der Blutprobe und die Separation des Blutplasmas. Das Antigen VP40 des Ebola-Virus' absorbiert an Nanopartikeln während des Fluidflusses und bildet Antigen-Nanopartikel-Komplexe, welche an einer Antigen-spezifischen Testlinie im Streifen gefangen werden und eine lokale Farbänderung verursachen. Diese Farbänderung gibt schlussendlich Auskunft darüber, ob eine Patient infiziert ist oder nicht. Der Flüssigkeitstransport im Teststreifen erfolgt über den Kapillareffekt, ein Effekt, welcher in einem Teilgebiet der Mikrosystemtechnik häufig zum Transport von Flüssigkeiten Anwendung findet, der Mikrofluidik.

1.2 Motivation

Die Mikrofluidik beschäftigt sich mit der Entwicklung und Nutzung von Technologien, welche die Manipulation kleinster Flüssigkeitsvolumina ermöglichen und dabei eine Vielzahl von Vorteilen gegenüber etablierten makrofluidischen Systemen aufweisen. Besonders in den Lebenswissenschaften spielen solche mikrofluidische Systeme zunehmend eine tragende Rolle und ersetzen mitunter "traditionelle" Technologien wie Well-Plate, Petrischale oder Eppendorf-Tube. Mikrosysteme für den Einsatz in der Biotechnologie oder medizinischen Diagnostik erfordern eine kostengünstige Herstellung. Prädestiniert hierfür sind Produkte aus Polymeren, welche einen wesentlichen Aspekt medizintechnischer Produkte, die "Einmalnutzung", gewährleisten.

Hervorzuheben sind Systeme, die über Funktionalitäten verfügen welche über die Eigenschaften passiver Kanalstrukturen hinaus reichen. Soll z.B. eine biotechnologische Prozesskette realisiert werden, sind aktive (oder steuerbare) Elemente unumgänglich. Filtereinheiten, Biomarker-Harvester, parallele BatchKultivierung und die Steuerung des Fluidflusses sind Beispiele für Abläufe in einem biotechnologischen Prozess, welche allerdings die bloße Nutzung von Ventilen überschreiten. Es werden somit Plattformtechnologien notwendig, welche eine in sich geschlossene Herstellungstechnologie aufweisen, eine Vielzahl an verschiedenen Funktionalitäten und Fluidoperationen ermöglichen und darüber hinaus skalierbar und kostengünstig in ihrer Herstellung sind.

Stimuli-sensitiven Hydrogele ermöglichen die Entwicklung solcher multilateralen Plattformtechnologien. Durch den Einsatz dieser Materialien können aktiv steuerbare Komponenten gefertigt werden, welche über externe oder interne Kontrollmechanismen adressierbar sind. Die Vielfalt der realisierbaren Bauelemente, die Möglichkeit der funktionellen und technischen Skalierbarkeit sowie die einfache und kostengünstige Herstellung machen Hydrogel-basierte Bauelemente und Systeme zu einer unglaublich vielseitigen und mächtigen mikrofluidischen Plattformtechnologie, welche es stetig weiterzuentwickeln gilt. Die Etablierung bestehender Elemente, die Erstellung von Fertigungstechnologien und neuartigen Systemansätzen sowie die Erprobung in biotechnologischen Prozessen sind aktuelle und zukünftige Entwicklungsschritte.

1.3 Zielstellung

Die vorliegende Arbeit hat zum Ziel, Elemente und Systeme darzustellen, welche für den Einsatz in einer mikrofluidisch abgebildeten biotechnischen Prozesskette geeignet sind. Die Abschnitte der Prozesskette umfassen dabei die Kultivierung, die Separation und die Analytik.

Das zentrale Element der Systeme bilden stimuli-sensitive Hydrogele. Entscheidend für eine mögliche Anwendung sind zunächst die Untersuchung der Hydrogele bezüglich ihrer chemischen Zusammensetzung, Kompatibilität zu relevanten Prozessmedien (Puffer), Steuergrößen (organische Lösungsmittel, Temperatur, Zucker) und Miniaturisierbarkeit und Reproduzierbarkeit. In der Arbeit werden zunächst Hydrogele unterschiedlicher Zusammensetzung untersucht und Schlussfolgerungen bezüglich der Prozesskompatibilitäten gezogen.

Einen wesentlichen Bestandteil biotechnologischer Prozessketten bildet die Kultivierung von Mikroorganismen. Dafür sind Kultivierungssysteme notwendig, welche die parallele Kultivierung von mehreren, voneinander separierten Organismen erlauben (Batch-Kultivierung). Für solch parallel arbeitende Systeme sind mikrofluidische Chips mit hochintegrierten aktiven Elementen notwendig, für die es eine Fertigungstechnologie zu entwickelt gilt.

Nach der Kultivierung von Mikroorganismen erfolgt in der Regel eine biochemische Charakterisierung entweder der Organismen selbst oder des verbleibenden Mediums. In beiden Fällen müssen die Organismen zunächst von der Matrix bzw. dem Medium abgetrennt werden. Dies kann mikrofluidisch über Siebe erfolgen. Um den Herstellungsaufwand der Systeme gering und deren Effizienz hoch zu halten, sind Siebstrukturen mit einer variablen Siebweite zu entwickeln. Im Anschluss an die Separation müssen für die Charakterisierung wichtige Biomoleküle (Biomarker) isoliert und vor Degradation geschützt werden. Dafür sind Hydrogele zu etablieren, welche über adaptierbare Filterfunktionen verfügen und eine weiterführende Nutzung als Reaktionsmatrix oder auslesbare Molekülspeicher erlauben.