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Abstract

The hybridization between microwave and optical technologies — microwave photon-
ics — is an emerging field with high potential. Benefitting from the best of both
worlds, microwave photonics has many use cases and is just at the beginning of its
success story. The availability of a higher degree of integration and new technologies
such as silicon photonics paves the way for new concepts, new components and new
applications.

In this work, first, the necessary basic building blocks — optical source, electro-
optical conversion, transmission medium and opto-electrical conversion — are intro-
duced. With the help of specific application examples ranging from chip level to
system level, the electro-optical co-design process for microwave photonic systems
is illustrated. Finally, future directions such as the support of electrical carriers in
the millimeter wave and THz range and realization options in integrated optics and
nanophotonics are discussed.
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1 Introduction

The invention of the semiconductor laser’ was the nucleus for optical communication
systems to replace their electrical counterparts. The use of light as carrier has some
major advantages over traditional electrical systems. In optical domain, there is nearly
unlimited bandwidth available. One major application is the transmission of enormous
amounts of data over long distance with low loss. Additionally, the optical signal can
be modified and transformed (e.g. generating electrical carriers, filtering and sensing).
However, information processing and memory are still realized in electrical domain.

Wireless RF signals are advantageous in lots of applications. That means, efficient
electro-optical and opto-electrical conversion is needed when used together with opti-
cal transmission. Achieving the best system performance requires a careful balance of
electrical and optical parts. This is not possible without a proficient co-design of op-
tical and RF building blocks, the field of microwave photonics. This work contributes
to the growing interest in that kind of systems. From chip-level with distances in the
micrometer range over board-level applications (centimeter) to access systems span-
ning over kilometers, microwave photonic solutions can be found benefitting from the
heritage in data center and backbone communication systems.

Long-haul systems are operated in the second (at 1.3 um wavelength) and third
optical window at a wavelength of about 1.5 um. Single-mode silica fibers ensure
maximum performance. Linear (chromatic dispersion, polarization mode dispersion
and attenuation) as well as nonlinear effects impair the transmitted signal. In the
second optical window, the chromatic dispersion has its minimum for standard single-
mode fiber while the third optical window is located at the attenuation minimum. Not
only is mode dispersion avoided by the single-mode operation but also devices based
on mode coupling such as gratings can be conveniently used. Among other applica-
tions, this enables sharp filters for dense wavelength division multiplexing (DWDM).

Data centers set completely different demands: Transmission distances stay well
below 10 km but connectivity is crucial. Requirements for signal distortions are
relaxed so that multi-mode fibers can be used. Connector technology can be more
cost-effective and simpler due to lower needs for mechanical precision because of
the bigger fiber diameters. Data center systems usually work in the first optical
window at 850 nm wavelength. They are designed in an economical way with a
lower accumulated data rate per fiber. That's because of working with lower line
rates and less spectrally efficient modulation formats. Moreover, only a small number
of WDM channels are used.

Expanding into smaller and smaller transmission distances, optical systems face
multiple constraints when serving for chip-to-chip and on-chip applications. While

Yan acronym for “light amplification by stimulated emission of radiation”
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the board-to-board communication and on-board systems have been influenced by
the data center based paradigm (multi-mode waveguides and low spectral efficiency),
the chip-level feature sizes impose single-mode waveguides. Silicon as omnipresent
material can be used as waveguide material for wavelengths larger than 1 pm. How-
ever, in the silicon photonics scenario, the light source is one of the major challenges.
Silicon is an indirect bandgap material. That makes it a big challenge to build an
efficient silicon based laser. Hence, mostly external I1l-V lasers are used nowadays.
In order to include lasing functionality to silicon based chip technology, multiple ap-
proaches are followed to integrate I11-V technology to silicon substrates for wafer-level
manufacturing. Thick buffers grown between Si and InGaAs help to adjust the lattice
mismatch and decrease the number of crystalline defects. A costly alternative is the
direct wafer bonding.

The use of optical waveguides such as fibers limits the optical systems to static
or quasi-static applications. Linking them with wireless technology overcomes this
drawback and allows reconfigurable and portable solutions. Mobile connectivity is the
main cause for growth rates in terms of bandwidth and number of devices. However,
only the last meters from the base station to the mobile unit are transmitted over
the air. The rest of the network is realized largely in optical domain in order to
meet the challenging performance demands. Microwave photonic technologies such
as carrier generation, electro-optical conversion and signal processing using photonics
can be used to simplify the network design. Moreover, for shorter distances (e.g.
for board-to-board communication), wireless approaches like beam steering / beam
switching can be applied to adaptively distribute a data stream to many different
locations. This kind of large-scale integration between optical and radio techniques
is only possible with microwave photonics.

In this work, important aspects of microwave photonic systems are studied in show-
case scenarios. First, the required building blocks are briefly introduced in chapter 2.
The implications of applying the well-known parts liker lasers, modulation, typical
transmission media and opto-electrical conversion in the context of microwave pho-
tonics are discussed. Following, the broad field where microwave photonic systems
can be deployed is illustrated with the help of examples for chip-level, board level
and system level operation in chapter 3. These examples cover ultra-short trans-
mission distances from a few hundred micrometers (through silicon vias) to tens of
kilometers (Radio-over-Fiber systems). At the same time, the different options of
using the optical medium just for transmission (chip-level intraconnects), to connect
photonics seamlessly with wireless technology (fiber-to-the-antenna), to introduce
photonic RF generation (with Talbot effect and in the Radio-over-Fiber system) or
to attach an electrical read-out to optical sensors in order to enhance the fields of
application are presented. Finally, the outlook in chapter 4 describes how to push
microwave photonics to higher frequencies in the THz region and to smaller scales in
nanophotonics.



