Niels Neumann

Microwave Photonic Applications - From Chip Level to System Level

Beiträge aus der Elektrotechnik

Niels Neumann

Microwave Photonic Applications - From Chip Level to System Level

Dresden 2020

Bibliografische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.dnb.de abrufbar.

Bibliographic Information published by the Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at http://dnb.dnb.de.

Zugl.: Dresden, Techn. Univ., Habil., 2020

Die vorliegende Arbeit stimmt mit dem Original der Habilitation "Microwave Photonic Applications - From Chip Level to System Level" von Niels Neumann überein.

© Jörg Vogt Verlag 2020 Alle Rechte vorbehalten. All rights reserved.

Gesetzt vom Autor

ISBN 978-3-95947-042-1

Jörg Vogt Verlag Niederwaldstr. 36 01277 Dresden Germany

 Phone:
 +49-(0)351-31403921

 Telefax:
 +49-(0)351-31403918

 e-mail:
 info@vogtverlag.de

 Internet :
 www.vogtverlag.de

Microwave Photonic Applications – From Chip Level to System Level

Dr.-Ing. Niels Neumann

Fakultät Elektrotechnik und Informationstechnik der Technischen Universität Dresden zur Erlangung des akademischen Grades

Doktoringenieur habilitatus

(Dr.-Ing. habil.)

genehmigte Habilitation

Vorsitzender:	Prof. DrIng. habil. Jürgen Czarske
Gutachter:	Prof. DrIng. Dirk Plettemeier
	Prof. Dr. Juan Jose Vegas Olmos
	Prof. DrIng. Christian-Alexander Bunge

Tag der	Einreichung:	10.12.2018
Tag des	Vortrags mit Kolloquium:	29.09.2020

Abstract

The hybridization between microwave and optical technologies – microwave photonics – is an emerging field with high potential. Benefitting from the best of both worlds, microwave photonics has many use cases and is just at the beginning of its success story. The availability of a higher degree of integration and new technologies such as silicon photonics paves the way for new concepts, new components and new applications.

In this work, first, the necessary basic building blocks – optical source, electrooptical conversion, transmission medium and opto-electrical conversion – are introduced. With the help of specific application examples ranging from chip level to system level, the electro-optical co-design process for microwave photonic systems is illustrated. Finally, future directions such as the support of electrical carriers in the millimeter wave and THz range and realization options in integrated optics and nanophotonics are discussed.

Contents

1	Intro	oduction	1
2	Basi	cs of microwave photonic systems	3
	2.1	Light source	3
	2.2	Electro-optical conversion	8
		2.2.1 Direct modulation	9
		2.2.2 External modulation	10
	2.3	Transmission medium	13
		2.3.1 Linear effects	14
		2.3.2 Nonlinear effects	17
	2.4	Opto-electrical conversion	19
3	App	lications of microwave photonic systems	23
	3.1	Chip level applications	23
		3.1.1 Optical TSV model	24
		3.1.2 Optical TSV characterization	29
		3.1.3 Energy efficiency in chip-level intraconnects	33
	3.2	Board level applications	42
		3.2.1 Photonic Tx antenna array	44
		3.2.2 Photonic Rx antenna	52
		3.2.3 Photonic RF generation using temporal Talbot effect	57
	3.3	System level applications	70
		3.3.1 Radio-over-Fiber systems	71
		3.3.2 FTTA system	77
		3.3.3 Wireless readout of optical sensors	83
	3.4	Summary	100
4	Futu	ire directions	101
	4.1	THz and sub-THz wireless carriers	101
	4.2	Microwave photonic approaches for THz systems	102
	4.3	Integrated optics	103
	4.4	Nanophotonics	106
	4.5	Summary	109
5	Con	clusion	111

List of Figures

4 5
5
lated
6
10
(right). 11
mod-
rence
12
14
s for
e dis-
15
erent
20
ernal
21
/ the
22
ı dis-
23
24
25
TSV
fiber
26
28
29
30
back-
e and
ed)31
back
with
31

3.10	Microscope images of back-illuminated non-waveguiding air-filled TSV	
	(left), waveguiding TSV with SU-8 polymer core and silicon dioxide	
	(right)	30
3 1 1	Microscope image of back-illuminated waveguide TSV with defect due	52
5.11	to hubble inside SU-8 polymer core	33
3 1 2	block diagram of electrical and ontical chip-to-chip link	34
3 1 3	Power consumption for electrical (single hop and multi-hop with hop	01
5.15	length 1.6 mm) and ontical transmission at 10 Chit/s depending on	
	transmission length	39
3 14	Data rate dependent length where optical systems start to consume	00
5.11	less power than electrical systems (single hop, dashed line, and multi-	
	hop with hop length 1.6 mm solid line)	40
3 15	Bitrate-dependent length where optical systems with different energy	10
0.10	efficiency of the electro-optical modulation stage consume less power	
	than a single hop electrical system	41
3.16	Measured transfer function of the photoreceiver PD-LD PTIN2.5 with	
	TIA and AGC for different optical input powers	45
3.17	Measured transfer function of a fiber-coupled transmit antenna	45
3.18	a) 2x1 antenna subarray fed by photodiodes connected by optical fiber.	
	b) 2x2 antenna array configuration consisting of two stacked 2x1 sub-	
	arrays	46
3.19	Matching of the Vivaldi 2x1 subarray depending on the feeding point	
	distance to the resonator	47
3.20	Optical feeding network consisting of signal splitting section, TTD	
	generation section connected with the antenna array elements	48
3.21	Antenna pattern: a) TTD0 without delay, b) TTD52 in pos. direction,	
	c) TTD134 in pos. direction, and d) TTD186 in neg. direction	50
3.22	Main lobe direction depending on TTD, measurement (solid line) and	
	simulation (dotted line) as function of frequency	51
3.23	Simulated frequency-dependent antenna properties: a) matching	
	(S_{11}) , b) antenna gain $\ldots \ldots \ldots$	53
3.24	Measured frequency-dependent radiation patterns of the antenna with	
	bypassed electronics: a) xz-plane, b) yz-plane	54
3.25	Photographs of the Rx antenna: a) front side, b) back side of antenna	
	with electronic circuit and radial stub	54
3.26	PCB part at the backside of the antenna	55
3.27	Measured frequency characteristic of the fiber-coupled active Rx an-	
	tenna system	56
3.28	Experimental setup for RF generation using the temporal Talbot effect	59
3.29	Normalized measured time domain signals for 10 GHz pulses, gen-	
	erated 30 GHz and 50 GHz tones (taken with a 50 GHz sampling \sim	50
2.22	scope)	59
3.30	ivieasured spectra of generated 60 – 90 GHz tones	60

3.31	Measured phase noise for the electrical 10 GHz SMP 04 reference and the generated 30 GHz , 60 GHz and 90 GHz tones	61
3.32	Measured phase noise for different reference sources (SMP 04, Anritsu	69
2 22	SDH lest set OC-192 clock)	02 64
3.33		04
3.34	Total phase holse change compared to electrical upconversion for Tal-	00
0.05	bot effect with different duty cycles and without Talbot effect	66
3.35	duty cycles, experimental values and calculated phase noise change	
	for electrical upconversion	67
3.36	Principle of Talbot effect supported millimeter wave generation and	
	efficiency improvement due to an arbitrary dispersive element	68
3.37	Efficiency enhancement compared to standard singlemode fiber for a	
	four fold multiplication of a 10 GHz reference signal depending on	
	the duty cycle of the pulse train	69
3.38	Radio-over-Fiber system consisting of central station (CS), base sta-	
	tions (BS) and mobile stations (MS)	72
3.39	Spectral efficiency of RoF system with respect to relative bandwidth .	72
3.40	Carrier generation and IQ data modulation in central station of RF-	
	over-Fiber systems	74
3.41	IF-over-Fiber central station and base station (transmitter part)	75
3.42	RoF / FTTA system with Central Station (CS), Optical Fiber Network,	
	Base Station (BS) including fiber-coupled Rx antenna and Mobile	
	Station (MS)	78
3.43	Measured Frequency characteristics of the fiber-coupled active an-	
	tenna system: Rx antenna (blue), Tx antenna (red), combined (black)	79
3.44	Measured spectrum for single tone (537 MHz) excitation	80
3.45	Block diagram of experimental setup	81
3.46	Measured eye diagram of received signal at 1 Gbit/s (25 $ m km$ trans-	
	mission distance between CS and Tx antenna)	82
3.47	Measured eye diagram of received signal at 750 Mbit/s (45 $ m km$ trans-	
	mission distance between CS and Tx antenna and 10 $\rm km$ between Rx $-$	
	antenna and CS)	82
3.48	Grating in single-mode fiber.	85
3.49	Top: Transmission spectrum of LPG-based temperature sensor at	
	23°C environmental temperature. Each notch corresponds to the cou-	
	pling of optical power from the core mode to a certain $\operatorname{HE}_{1,\mathrm{X}}$ cladding	
	mode (resonance). Bottom: Wavelength-dependent difference of the	
	effective refractive indices of the core and $\operatorname{HE}_{1,\mathrm{X}}$ cladding modes. In-	
	termodal coupling causing energy transfer (resonance) between the	
	the modes takes place at the intersections with the grating line (see	
	equation (3.53)). The spectral shift of the resonance wavelength is	
	higher if the intersection angle is flatter	87

3.50	Block diagram of wireless transmission of optical sensor data using Radio-over-Fiber approach	88
3.51	Simultaneous wireless transmission and evaluation of optical sensor: a) RoF transmitter output signal, b) signal being influenced by the optical sensor, c) received sensor signal after wireless transmission	88
3.52	Reference signal architectures: a) reference signal added after sensor, b) reference signal added after sensor (optically switched), c) reference signal added before sensor at different wavelength.	90
3.53	Setup with wireless transmission options (optical combining and one antenna or two antennas in close vicinity) using reference paths to calibrate out cross dependencies of the sensor and the link	91
3.54	Sensor value to reference power ratio $(rac{a_1^2}{a_2^2})$ depending on measured	
	DC to LF power ratio $\gamma = \frac{P_{DC}}{P_{TF}} \dots \dots \dots \dots \dots$	93
3.55	Simplified measurement setup for RoF sensor validation	94
3.56	Temperature dependent measured optical spectra after the optical sensor	94
3.57	Measured electrical power depending on temperature $\ \ldots \ \ldots \ \ldots$	95
3.58	$eq:packaged_$	96
3.59	Packaging: a) Packaged optical fiber based moisture sensor embedded in carbon reinforcement for carbon concrete composite, b) stitching process	96
3.60	Sensor spectra: a) humidity sensor during drying of carbon concrete composite, b) strain sensor with respect to applied strain	97
3.61	Strain sensor resonance wavelength shift	98
3.62	Spectra of DFB laser modulated with RF signal for changing spectral characteristic of the optical fiber sensor	98
3.63	Sensitivity depending of the spectral position of the laser with respect to the resonance of the optical fiber sensor	99
4.1	Talbot effect based RF upconversion: a) block diagram, b) proposed chip and package.	103
4.2	Possible electronic-photonic RoF / FTTA solutions: a) central station, b) multi-band base station.	104
4.3	Proposed electronic-photonic integrated circuit for optical angular mo- mentum receiver.	105
4.4	Co-integration between self-assembled nano-scale devices and micro- electronics	107
4.5	Optical biosensor employing dielectric core-shell particles arranged as grating.	107
4.6	Photonic cross-dipole antenna	108

List of Figures

4.7	Principle of all-optical switching and modulation using nanophotonics:	
	In the presence of the short wavelength control signal, the resonance	
	of the long arm of the photonic antenna shifts by $\Delta\lambda$ switching on	
	the long wavelength signal	

List of Tables

3.1	TSV overview	32
3.2	Contributions to power consumption of electrical and optical chip-to-	
	chip links	37
3.3	Attenuation of elements of the feeding structure	47
3.4	Attributes of the splitting section of the optical feeding structure	48
3.5	Fiber patch cable sets generating TTD	49
3.6	TTD configurations (splitter + patch cables)	49
3.7	Antenna properties	52
3.8	Experimental results for 20 $\rm GHz$ – 90 $\rm GHz$ RF generation $~.~.~.~$	60

Nomenclature

AC	Alternating Current
AGC	Automatic Gain Control
APD	Avalance Photodiode
ASK	Amplitude Shift Keving
BER	Bit-Error Rate
BS	Base Station
CPU	Central Processing Unit
CS	Central Station
CW	Continuous Wave
DBR	Distributed Bragg-Reflector
DC	Direct Current
DFB	Distriubuted Feedback Laser
DGD	Differential Group Delay
DNA	Deoxyribonucleic acid
DP-QPSK	Dual Polarization Quarternary Phase Shift Keying
DPMZM	Dual Parallel Mach-Zehnder Modulator
DSB	Double Side-Band
DWDM	Dense Wavelength Division Multiplex
E/O	electro-optical
ECL	External Cavity Laser
EDFA	Erbium Doped Fiber Amplifier
EPIC	Electronic-Photonic Integrated Circuit
ESA	Electrical Spectrum Analyzer
FBG	Fiber Bragg Grating
FTTA	Fiber-to-the-Antenna
FWHM	Full Width at Half Maximum
FWM	Four-Wave Mixing
HD	High Definition
HPBW	Half Power Beam Width
HPC	High Performance Computing
IC	Integrated Circuit
IF	Intermediate Frequency
IL	Insertion Loss
IQ	Inphase and Quadrature
ISM	Industrial, Scientific and Medical
LAN	Local Area Network
LDD	Laser Diode Driver

LED	Light-Emitting Diode
LF	Low Frequency
LNA	Low-Noise Amplifier
LO	Local Oscillator
LPG	Long-Period Grating
MDM	Mode Division Multiplex
MIMO	Multiple Input Multiple Output
MMF	Multi-Mode Fiber
mPSK	m-ary Phase Shift Keying
mQAM	m-ary Quadrature Amplitude Modulation
MS	Mobile Station
MUX	Multiplexer
MZI	Mach-Zehnder Interferometer
MZM	Mach-Zehnder Modulator
NOC	Network on Chip
NRZ	Non-Return to Zero
0/E	opto-electrical
0 ^A M	Optical Angular Momentum
ODSB-SC	Optical Double Side-Band modulation with Suppressed Carrier
OFDM	Orthogonal Frequency Division Multiplexing
OFDR	Optical Frequency Domain Reflectometry
OM3	Optical Multi-Mode Fiber, Class 3
00K	On-Off Keying
OSA	Optical Spectrum Analyzer
OTA	Over-the-Air
PCB	Printed-Circuit Board
PE	Polyethylene
PIC	Photonic Integrated Circuit
PMD	Polarization Mode Dispersion
QPSK	Quadrature / Quaternary Phase Shift Keying
RAU	Remote Antenna Unit
RF	Radio Frequency
RIN	Relative Intensity Noise
RMS	Root Mean Square
RoF	Radio-over-Fiber
ROP	Received Optical Power
RRH	Remote Radio Head
Rx	Receiver
RZ	Return to Zero
SBS	Stimulated Brillouin Scattering
SDM	Spatial Division Multiplex
SMA	Sub-Miniature version A
SMF	Single-Mode Fiber
SMSR	Side-Mode Suppression Ratio

SNR	Signal-to-Noise Ratio
SOI	Silicon-on-Insulator
SPM	Self-Phase Modulation
SPR	Surface-Plasmon Resonance
SRS	Stimulated Raman Scattering
SSB	Single Side-Band
ΤΕ	Transverse Electric
TIA	Trans-Impedance Amplifier
ΤΜ	Transverse Magnetic
TSV	Through Silicon Via / Through Substrate Via
TTD	True Time Delay
Tx	Transmitter
UWB	Ultra Wide-Band
VCSEL	Vertical Cavity Surface-Emitting Laser
VOA	Variable Optical Attenuator
WDM	Wavelength Division Multiplex
XPM	Cross-Phase Modulation

1 Introduction

The invention of the semiconductor laser¹ was the nucleus for optical communication systems to replace their electrical counterparts. The use of light as carrier has some major advantages over traditional electrical systems. In optical domain, there is nearly unlimited bandwidth available. One major application is the transmission of enormous amounts of data over long distance with low loss. Additionally, the optical signal can be modified and transformed (e.g. generating electrical carriers, filtering and sensing). However, information processing and memory are still realized in electrical domain.

Wireless RF signals are advantageous in lots of applications. That means, efficient electro-optical and opto-electrical conversion is needed when used together with optical transmission. Achieving the best system performance requires a careful balance of electrical and optical parts. This is not possible without a proficient co-design of optical and RF building blocks, the field of microwave photonics. This work contributes to the growing interest in that kind of systems. From chip-level with distances in the micrometer range over board-level applications (centimeter) to access systems spanning over kilometers, microwave photonic solutions can be found benefitting from the heritage in data center and backbone communication systems.

Long-haul systems are operated in the second (at 1.3 μ m wavelength) and third optical window at a wavelength of about 1.5 μ m. Single-mode silica fibers ensure maximum performance. Linear (chromatic dispersion, polarization mode dispersion and attenuation) as well as nonlinear effects impair the transmitted signal. In the second optical window, the chromatic dispersion has its minimum for standard single-mode fiber while the third optical window is located at the attenuation minimum. Not only is mode dispersion avoided by the single-mode operation but also devices based on mode coupling such as gratings can be conveniently used. Among other applications, this enables sharp filters for dense wavelength division multiplexing (DWDM).

Data centers set completely different demands: Transmission distances stay well below 10 km but connectivity is crucial. Requirements for signal distortions are relaxed so that multi-mode fibers can be used. Connector technology can be more cost-effective and simpler due to lower needs for mechanical precision because of the bigger fiber diameters. Data center systems usually work in the first optical window at 850 nm wavelength. They are designed in an economical way with a lower accumulated data rate per fiber. That's because of working with lower line rates and less spectrally efficient modulation formats. Moreover, only a small number of WDM channels are used.

Expanding into smaller and smaller transmission distances, optical systems face multiple constraints when serving for chip-to-chip and on-chip applications. While

¹an acronym for "light amplification by stimulated emission of radiation"

the board-to-board communication and on-board systems have been influenced by the data center based paradigm (multi-mode waveguides and low spectral efficiency), the chip-level feature sizes impose single-mode waveguides. Silicon as omnipresent material can be used as waveguide material for wavelengths larger than 1 μm . However, in the silicon photonics scenario, the light source is one of the major challenges. Silicon is an indirect bandgap material. That makes it a big challenge to build an efficient silicon based laser. Hence, mostly external III-V lasers are used nowadays. In order to include lasing functionality to silicon based chip technology, multiple approaches are followed to integrate III-V technology to silicon substrates for wafer-level manufacturing. Thick buffers grown between Si and InGaAs help to adjust the lattice mismatch and decrease the number of crystalline defects. A costly alternative is the direct wafer bonding.

The use of optical waveguides such as fibers limits the optical systems to static or quasi-static applications. Linking them with wireless technology overcomes this drawback and allows reconfigurable and portable solutions. Mobile connectivity is the main cause for growth rates in terms of bandwidth and number of devices. However, only the last meters from the base station to the mobile unit are transmitted over the air. The rest of the network is realized largely in optical domain in order to meet the challenging performance demands. Microwave photonic technologies such as carrier generation, electro-optical conversion and signal processing using photonics can be used to simplify the network design. Moreover, for shorter distances (e.g. for board-to-board communication), wireless approaches like beam steering / beam switching can be applied to adaptively distribute a data stream to many different locations. This kind of large-scale integration between optical and radio techniques is only possible with microwave photonics.

In this work, important aspects of microwave photonic systems are studied in showcase scenarios. First, the required building blocks are briefly introduced in chapter 2. The implications of applying the well-known parts liker lasers, modulation, typical transmission media and opto-electrical conversion in the context of microwave photonics are discussed. Following, the broad field where microwave photonic systems can be deployed is illustrated with the help of examples for chip-level, board level and system level operation in chapter 3. These examples cover ultra-short transmission distances from a few hundred micrometers (through silicon vias) to tens of kilometers (Radio-over-Fiber systems). At the same time, the different options of using the optical medium just for transmission (chip-level intraconnects), to connect photonics seamlessly with wireless technology (fiber-to-the-antenna), to introduce photonic RF generation (with Talbot effect and in the Radio-over-Fiber system) or to attach an electrical read-out to optical sensors in order to enhance the fields of application are presented. Finally, the outlook in chapter 4 describes how to push microwave photonics to higher frequencies in the THz region and to smaller scales in nanophotonics.