Beiträge aus der Elektrotechnik

Matthias Lippmann

Pseudo-Random-Korrelationsanalyse zur breitbandigen Bestimmung der Beweglichkeit des Stapes-Ringband-Systems im Mittelohr

Dresden 2021

Bibliografische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.dnb.de abrufbar.

Bibliographic Information published by the Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at http://dnb.dnb.de.

Zugl.: Dresden, Techn. Univ., Diss., 2020

Die vorliegende Arbeit stimmt mit dem Original der Dissertation "Pseudo-Random-Korrelationsanalyse zur breitbandigen Bestimmung der Beweglichkeit des Stapes-Ringband-Systems im Mittelohr" von Matthias Lippmann überein.

© Jörg Vogt Verlag 2021 Alle Rechte vorbehalten. All rights reserved.

Gesetzt vom Autor

ISBN 978-3-95947-045-2

Jörg Vogt Verlag Niederwaldstr. 36 01277 Dresden Germany

 Phone:
 +49-(0)351-31403921

 Telefax:
 +49-(0)351-31403918

 e-mail:
 info@vogtverlag.de

 Internet :
 www.vogtverlag.de

Technische Universität Dresden

Pseudo-Random-Korrelationsanalyse zur breitbandigen Bestimmung der Beweglichkeit des Stapes-Ringband-Systems im Mittelohr

Dipl.-Ing. Dipl.-UWT Matthias Lippmann

Von der Fakultät Elektrotechnik und Informationstechnik der Technischen Universität Dresden

zur Erlangung des akademischen Grades

Doktoringenieur

(Dr.-Ing.)

genehmigte Dissertation

Vorsitzender: Prof. Dr.-Ing. habil. Hagen Malberg

1. Gutachter: Prof. Dr.-Ing. habil. Adolf Finger

2. Gutachter: Prof. Dr. med. Dr. h.c. Thomas Zahnert

3. Gutachter: Prof. Dr.-Ing. Hans-Jürgen Zepernick

Tag der Verteidigung: 02.11.2020 Tag der Einreichung: 04.11.2019

Inhaltsverzeichnis

Ze	eichenerklärung vii				
Ab	Abkürzungen xi				
Eiı	nleitu	ing		4	
1.	Mot	ivation	und Stand der Technik	6	
2.	Abla	auf eine	er Stapesoperation	9	
3.	Pseu	udo-No	ise/ Pseudorauschen	11	
	3.1.	Defini	tion von Pseudo Noise Signalen	11	
	3.2.	Erzeug	gung von Pseudo Noise Signalen	12	
		3.2.1.	Maximalfolgen	12	
		3.2.2.	Primitives charakteristisches Polynom	13	
		3.2.3.	Linear rückgekoppelte Schieberegister	14	
		3.2.4.	Eigenschaften von Maximalfolgen und Pseudo Random		
			Signalen	15	
		3.2.5.	Spektrale Eigenschaften von Pseudo Random Signalen	16	
		3.2.6.	Korrelationseigenschaften	17	
4.	Korı	relation	smesstechnik	20	
	4.1.	Signal	klassen	20	
	4.2.	Theor	em von Wiener-Chintschin	21	

4.3. Satz von Parseval		on Parseval	22			
		ationsanalyse von LTI-Systemen	22			
	4.5.	5. Numerische Berechnung				
		4.5.1.	DFT	26		
		4.5.2.	Walsh-Matrix	27		
		4.5.3.	Die Fast-Hadamard-Transfomanton	30		
		4.5.4.	Eigenschaften und Grenzen der Integraltransformation	33		
		4.5.5.	Berechnung der Korrelation mittels FWHT	34		
		4.5.6.	Korrelationsalgorithmus mit FWHT	35		
		4.5.7.	Speicherplatz FWHT	38		
	4.6.	Vergle	ich von Sweep- und PN-Signalen	39		
	4.7.	Störsig	gnale	39		
5.	Mec	lechanik des Mittelohrs 4				
	5.1.	Anato	mie und Funktion	40		
	5.2.	Stapes	s und Ringband im ovalen Fenster	44		
	5.3.	Otosk	lerose	46		
6.	Мос	lellieru	ng des System Stapes Ringband	48		
	6.1.	Linear	es Modell	48		
		6.1.1.	Feder-Masse-System Kolbenschwinger	48		
		6.1.2.	Elektromechanische Analogie	49		
		6.1.3.	Zweipolmodell des Stapes-Ringband-Systems	50		
		6.1.4.	Einfluss der Parameteränderung auf den Frequenzgang	51		
	6.2.	Nichlin	neares Modell	52		
	6.3.	Linear	isierung des Mehrfedermodells	55		
	6.4.	Elektr	omechanische Parameter der Feder-Masse-Systeme	57		

		6.4.2.	Herleitung der Schnelle	60
		6.4.3.	Annahmen und Parameter	62
7.	Sim	ulations	sergebnisse	65
	7.1.	Unters	suchung der Korrelationsmesstechnik	65
		7.1.1.	Matlabmodell	65
		7.1.2.	Unkorreliertes Rauschen als Störsignal	66
		7.1.3.	Tonale Störsignale	68
		7.1.4.	Störung durch zeitlich variable tonale Störsignale	68
		7.1.5.	Störung durch impulshaftes Störsignal	71
	7.2.	Unters	suchung zum Verhalten des linearisierten Modells	72
		7.2.1.	Simulationsmodell mit LT-Spice	72
		7.2.2.	Ergebnisse der Simulation mit LT-Spice	75
	7.3.	Unters	suchung des nichtlinearen Modells	82
		7.3.1.	Ergebnisse bei Anregung mit Sinus	84
		7.3.2.	Anregung mit Rauschen	87
		7.3.3.	Abhängigkeit der Resonanzfrequenz von der Aufsatzkraft	89
8.	Mes	ssysten	n mit ARM Cortex M4	91
	8.1.	ARM	Cortex M4	92
	8.2.	Entwie	cklungsboard	92
		8.2.1.	Digital-Analog-Konverter	92
		8.2.2.	Analog-Digital-Konverter	94
		8.2.3.	Timer-Counter	95
		8.2.4.	UART/USART-Schnittstelle	95
		8.2.5.	Display	96
	8.3.	Periph	erie des Messaufbaus	96
		8.3.1.	Schwingungserreger	97

		8.3.2.	Verstärker	98
		8.3.3.	MEMS-Bausteine	99
		8.3.4.	Hochpass	101
		8.3.5.	Tiefpass	102
9.	Soft	wareim	plementierung ARM Cortex M4	106
	9.1.	Spekti	ralmessung ohne Referenzsignal	106
	9.2.	Korrel	lationsmessung mit KKF	107
	9.3.	Korrel	ationsmessung mit partieller KKF	109
	9.4.	Einsat	z der Fast-Walsh-Hadamard-Transfomation	111
	9.5.	Signal	erzeugung	113
	9.6.	Param	etrierung der Algorithmen	114
	9.7.	Daten	verarbeitung im Festkommaformat	116
10	.Mes	sergeb	nisse	117
	10.1.	Verme	ssung eines Drahtes	117
	10.2.	Verme	ssung eines analogen Bandpassfilters	117
	10.3.	Verme	ssung eines Schwingtisches mit MEMS-Sensor	118
	10.4.	Zeitbe	darf der Algorithmen	119
	10.5.	Zusam	menfassung der Messergebnisse	122
11.	. Vors	chlag f	für eine Sonde und Ausblick	125
12	. Zusa	ımmen	fassung	128
Та	belleı	nverzei	chnis	130
Ab	bildu	ngsver	zeichnis	131
Lit	eratu	irverzei	ichnis	135

Α.	Anhang 1: Parameter der Stapedes und Ringbänder aus der Li- teratur	141
в.	Anhang 2: Technische Daten des Messsystems	143
С.	Anhang 3: Geometrische Anordnung der Federn auf dem Stapes- umfang	146
D.	Anhang 4: Programmablaufpläne der implementierten Korrelati- onsalgorithmen	149

Zeichenerklärung

	häufige Formelzeichen und Syr	nbole
a	Beschleunigung	in $m \cdot s^{-2}$
с	Schallgeschwindigkeit	in $m \cdot s^{-1}$
C	Kapazität	in F
D	Dämpfungsgrad	
f	Frequenz	in Hz
f_c	Clockfrequenz	in Hz
f_s	Samplingrate	in Hz
f_R	Resonanzfrequenz	in Hz
F	Kraft	in N
G	Leitwert	in $S = \Omega^{-1}$
Ι	Stromstärke	in A
k	Federkonstante	in $N \cdot m^{-1}$
L	Induktivität	in $\mathbf{H} = \mathbf{V} \cdot \mathbf{s} \cdot \mathbf{A}^{-1}$

n	aunge Formeizeichen und Symbole (.	rortsetzung)
\overline{m}	Masse	in kg
M	Drehmoment	in N \cdot m
n	Ordnung einer Maximalfolge	
\bar{n}	Nachgiebigkeit	in $\mathbf{m} \cdot \mathbf{N}^{-1}$
Ν	Anzahl der Elemente einer Maximalfol- ge	
Р	Leistung	in W
q	Grad einer Maximalfolge	
r	Reibungsimpedanz	in $N \cdot s \cdot m^{-1}$
R_{xx}	Autokorrelations funktion (AKF)	
R_{xy}	$\label{eq:KF} Kreuzkorrelations funktion~(KKF)$	
S	${\it Spektralleistungsdichte}$	in Ws
S_{xx}	Autoleistungsdichte	in Ws
S_{xy}	Kreuzleistungsdichte	in Ws
t	Zeit	in s
T	Periodendauer	in s
T_N	Periodendauer einer Maximalfolge	in s
U	Spannung	in V

häufige Formelzeichen und Symbole (Fortsetzung)

	8	8/
v	Schnelle	in $m \cdot s^{-1}$
w	mechanischer Widerstand	in kg $\cdot{\rm s}^{-1}$
x	Ortsvektor	in m
Y_{mech}	mechanische Admittanz	in $\mathbf{m}\cdot\mathbf{N}^{-1}\cdot\mathbf{s}^{-1}$
Z_{mech}	mechanische Impedanz	in $N \cdot s \cdot m^{-1}$
α	Dämpfungskonstante	in m^{-1}
δ	Diracscher Einheitsimpuls	
λ	Wellenlänge	in m
ρ	Dichte	in kg \cdot m ⁻³
φ	Winkel	in <i>rad</i>
Φ_{xx}	diskrete AKF	
Φ_{xy}	diskrete KKF	
ω	Kreisfrequenz $\omega = 2\pi \cdot f$	in s^{-1}

häufige Formelzeichen und Symbole (Fortsetzung)

	Konstanten	
e	Euler'sche Zahl	$\approx 2,71828$
j	imaginäre Einheit	$j^2 = -1$
π	Kreiszahl	$\approx 3,1415$

Abkürzungen

Abkürzungen			
AKF	AKF Autokorrelationsfunktion		
ADC	Analog-Digital-Wandler		
DAC	Digital-Analog-Wandler		
DUT	Device Unter Test		
DSP	Digitaler Signalprozessor		
DFT	Diskrete Fouriertransformation		
\mathbf{FFT}	Fast Fouriertransformation		
FPGA	Field Programmable Gate Array		
(F)WHT	(Fast) Walsh-Hadamard Transformation		
GF	Galoisfeld		
KKF	Kreuzkorrelationsfunktion		
LSFR	Linear Feedback Shift Register/ linear rückgekoppeltes Schieberegister		

Abkürzungen (Fortsetzung) Linear Time Invariant/ linear und zeitun-LTI abhängig MEMS Micro-Electro-Mechanical System MF Maximalfolge MLS Maximum Length Sequence \mathbf{PC} Personal Computer PN / PR Pseudo Noise / Pseudo Random PORP partial ossicular chain reconstruction TORP total ossicular chain reconstruction

Abstract

More than 50 years after the introduction of reconstructive surgery in the middle ear by Wullenstein [45] the results still vary in a larger range. After a total ossicular chain reconstruction (TORP) 60% of the patient and after a partial ossicular chain reconstruction (PORP) about 40% of the patients still have a lesser sound transmission by more than 20dB in comparison with others. Though, the operation techniques are standardized. One of the influencing factors is the resistance of the stapes that is a result of the stiffness of the annular stapedial ligament. The state-of-the-art to determine the mobility of the stapes during an operation is to move its footplate with a dissection needle. Unfortunately, with this method the surgeon can only decide between the two states mobile and fixed. In 2001 Zahnert et al. introduced an electromagnetic probe for an intraoperative measurement of the stapes mobility [48]. The probe they introduced was a very high resonant system, working at a resonance frequency of 2400 Hz. Though, the input impedance of the cochlea is mainly influenced by the stiffness of the annular ligament at lower frequencies. Therefore a method for measuring the transfer function with a broader bandwidth can provide better information form that the surgeon can decide about the procedure during an operation. Pseudo random signal processing is a state-of-the-art technique and is used in many applications like satellite navigation and encryption coding technologies. In the field of acoustics pseudo random signals are used for example for the measurement of pulse response in rooms. Correlation analysis is the key algorithm for these measurements. With the help of modern digital signal processors (DSP) today it is possible to integrate the algorithms into a handheld device and provide a tool that

can be used during an operation. By using MEMS-Elements as sensors and actors the probe can have a small design and still gives a result over a larger frequency range. The middle ear is a very small and fragile construct, including the smallest bones of the human body. The forces for excitation of the stapes must be very small (< 5 mN) to not do any damage. Because of that, the measuring system should be very robust against disturbing signals that may come from head movement of the patient, the hand movement of the surgeon or outside sound sources.

Danksagung

An dieser Stelle möchte ich mich allen voran bei Prof. Dr.-Ing. habil. Adolf Finger als Ideengeber, für die Betreuung meiner Promotion und die gemeinsame Projektarbeit zur Tinnituskompensation bedanken.

Ganz besonderer Dank gilt meinen Eltern für die Unterstützung während meiner Studienzeiten an der TU Dresden.

Darüber hinaus möchte ich der Firma SPEKTRA Schwingungstechnik und Akustik GmbH aus Dresden für die zur Verfügung gestellten Geräte für den Messaufbau danken.

Einleitung

"Das Gehör erlaubt es akustische Reize aus der Umgebung wahrzunehmen und zu verarbeiten. Wichtig für die soziale menschliche Interaktion ist dabei vor allem die Sprache." [45]

Bei operativen Eingriffen zur Verbesserung des Gehörs durch Einsetzen von Gehörknöchelprothesen im Mittelohr ist der Erfolg der Operation von Patient zu Patient trotz standardisierter Operationsmethoden sehr unterschiedlich. Dies liegt unter anderem an der sehr subjektiven Bestimmung der Beweglichkeit des Steigbügels (*lat. stapes*) während der Operation. Diese Bestimmung wird vom Operateur mit eine Präpariernadel durchgeführt und unterscheidet bisher nur in "fest" oder "beweglich". Dabei bietet die heutige Messtechnik einige Möglichkeiten um die Beweglichkeit objektiv und differenziert für verschiedene Frequenzen anzugeben. In dieser Arbeit soll deshalb ein Konzept für die Signalverarbeitung vorgestellt werden, mit dem es möglich ist breitbandig über den gesamten Hörbereich den Frequenzgang zu bestimmen. Die Grundlage dafür bildet die Korrelationsmesstechnik auf Basis der Pseudo-Random-Signalverarbeitung. Diese ist bekannt und wird oft eingesetzt um die Ubertragungsfunktionen verschiedenster linearer zeitinvarianter Systeme (eng.: linear time invariant; LTI-Systeme) zu bestimmen. Um diese Technik einsetzen zu können, muss zuerst ein geeignetes Modell des Schwingungssystem Stapes-Ringband im ovalen Fenster der Hörschnecke erstellt werden. In der Literatur gibt es dazu bereits einige Untersuchungen zu den Parametern

und verschiedene mehr oder weniger genaue Modelle für verschiedene Anwendungen. Darüber soll untersucht werden, inwieweit sich eventuell auftretende Störungen auf die Algorithmen der Korrelationsmesstechnik auswirken. Dazu gehört auch, den Einfluss des Operateurs zu untersuchen, welcher die Sonde einsetzt. Beispielsweise kann die Kraft, mit der die Sonde auf die Fußplatte des Stapes gedrückt wird, den Ausgang der Messung verändern, je nachdem wie weit diese aus ihrem natürlichen Arbeitspunkt herausgedrückt wird. Auch kann nicht gewährleistet werden, dass die Sondennadel immer exakt mittig aufgesetzt wird. Im nächsten Schritt soll dann ein mittels eines digitalen Signalprozessors (DSP) ein Messsystem aufgebaut werden, mit dem die Algorithmen zur Frequenzgangbestimmung evaluiert werden können. Dabei ist auf den Operationsprozess Rücksicht zu nehmen. Wenn die Messung während einer Operation durchgeführt werden soll, um anhand der Ergebnisse den weiteren Operationsverlauf festzulegen, muss die Auswertung und Ausgabe der Messwerte recht schnell gehen. Dafür müssen die Algorithmen möglichst ressourcenschonend implementiert sein, jedoch trotzdem die notwendige Genauigkeit der Ergebnisse liefern. Als DSP wird ARM Cortex M4 verwendet und der Aufbau als Labormuster realisiert. Am Ende steht eine Empfehlung, wie die Signalverarbeitung für eine Messsonde zur intraoperativen Stapesmobilitätsmessung umgesetzt werden kann.

1. Motivation und Stand der Technik

Über 50 Jahre nach Begründung der Tympanoplastik durch Wullstein und Zöllner [45] sind die postoperativen audiologischen Ergebnisse nach hörverbessernden Operationen mit vollständiger Rekonstruktion der Gehörknöchelkette im Sinne einer Tympanoplastik TYP III mittels sogenannter total ossicular chain reconstruction prothesis (TORP) mit einer großen Streubreite der postoperativen Hörergebnisse versehen. So finden sich bei etwa 60% der Patienten Schallleitungskomponenten von mehr als $20 \, dB$. Auch nach alleiniger Myringoplastik verbleiben nur in $10 - 20 \,\%$ der Fälle Schallleitungskomponenten von mehr als 20 dB, und nach Interposition einer partial ossicular rekonstructive prosthesis (PORP) bis zu 40%. Die hohe Streubreite der audiologischen Ergebnisse findet man trotz standardisierter Operationsmethoden und identischen Ausgangsbedingungen bezüglich Schleimhautbeschaffenheit und Belüftung des Mittelohrs. Als einer der vielen verantwortlichen Einflussfaktoren wird der Widerstand des Steigbügels, d.h. die Steifigkeit des Ringbandes (lat. ligamentum annulare), mit dem der Stapes im ovalen Fenster der Cochlea aufgehängt ist, angesehen. Stand der Technik bei der Bestimmung der Beweglichkeit des Stapes während einer Operation ist die Palpation mit einer Präpariernadel. Dabei versucht der operierende Arzt den Stapes zu bewegen und kann in die beiden Zustände "mobil" oder "fixiert" unterteilen. Zur objektiven Bestimmung und Quantifizierung der Steifigkeit des Ringbandes und damit der Stapesmobilität existieren bisher nur wenige Untersuchungen [48]. In einer Vorarbeit von Zahnert *et al.* [48] konnte gezeigt werden, dass mit einer handgeführten elektromagnetischen Sonde die Schwingfähigkeit des Stapes in unterschiedliche Grade eingeteilt werden kann. Der schematische Aufbau und die handgeführte Sonde sind in Abbildung 1.1 dargestellt. Die Autoren postulierten, dass mit dieser Methode eine Prognose über die postoperative Hörfähigkeit möglich sein kann. Sie schränkten jedoch ein, dass die von ihnen verwendete Sonde lediglich in einer Resonanzfrequenz von 2400 Hz arbeitet. Die Chochleaimpedanz wird jedoch besonders bei tieferen Frequenzen von der Ringbandsteifigkeit bestimmt. Ist ein operierender Arzt in der Lage die Steifigkeit des Ringbandes während der Operation zu quantifizieren, kann er noch währen der Operation über geeignete Maßnahmen entscheiden, welche die postoperativen Hörergebnisse positiv beeinflussen. Dies könnten zum Beispiel Stapedotomie oder Stapedektomie sein, bei denen der Stapes teilweise oder vollständig ersetzt werden.

Im Gegensatz zu der elektromagnetischen Sonde, welche im Jahr 1998 unter der DE 198 21 602 C1 zum Patent [23] angemeldet wurde, bietet die heutige Technik mit der hohen Rechenleistung und einem hohen Integrationsgrad, sowie dem Einsatz von MEMS-Sensoren ganz neue Möglichkeiten. Dadurch können auch komplexere Algorithmen in kleine handgeführte Geräte integriert werden. Aus der technischen Akustik und der Signalverarbeitung sind Messverfahren bekannt, mit denen der Frequenzgang eines schwingfähigen Systems auch breitbandig bestimmt werden kann. Daher ist man nicht mehr auf ein resonantes Messsystem angewiesen, welches nur über einen schmalbandigen Frequenzbereich genaue Ergebnisse liefert, sondern kann die Beweglichkeit über einem breiten Frequenzbereich bestimmen. Pseudo-Random-Signale sind bereits seit Langem bekannt und werden auf Grund ihrer deterministischen und gleichzeitig rauschähnlichen Eigenschaften vielfältig eingesetzt. Sie dienen in der Satellitennavigation der Synchronisierung, bilden die Grundlage von Verschlüsselungs- und Codierungstechniken und werden bei Spread-Spektrum-Techniken in der Signalübertragung eingesetzt. Darüber hinaus sind sie auf Grund ihrer guten Korrelationseigenschaften auch in der so genannten Korrelationsmesstechnik zur Bestimmung von Übertragungsfunktionen verbreitet. Ein Beispiel hierfür ist das System MLLSA aus der technischen Akustik, mit dem Raumimpulsantworten gemessen werden können. Zur Funktion des Mittelohr, und speziell der Signalübertragung gibt es bereits eine Vielzahl an Untersuchungen. Es wird heute im Allgemeinen gut verstanden wie die Signalweiterleitung des Luftschalls vom Trommelfell zu den Nervenzellen in der Hörschnecke im Innenohr funktioniert. Es wurden für verschiedene Anwendungen auch bereits verschiedene Modelle für diese Signalübertragung erstellt. Darauf aufbauend kann ein Modell entwickelt werden, welches alle relevanten Parameter berücksichtigt, um bei einer Operation die Steigbügelbeweglichkeit optimal bestimmen zu können.

Abb. 1.1.: Prinzip der Messonde [48]