
Modeling and Performance Estimation for
Multiprocessor System On Chip Architectures

Nairuhi Grigoryan

Beiträge aus der Informationstechnik

Dresden 2023

Mobile Nachrichtenübertragung
Nr. 100

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im
Internet über http://dnb.dnb.de abrufbar.

Bibliographic Information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche
Nationalbibliografie; detailed bibliographic data are available on the Internet
at http://dnb.dnb.de.

Zugl.: Dresden, Techn. Univ., Diss., 2022

Die vorliegende Arbeit stimmt mit dem Original der Dissertation
„Modeling and Performance Estimation for Multiprocessor System On Chip
Architectures“ von Nairuhi Grigoryan überein.

© Jörg Vogt Verlag 2023
Alle Rechte vorbehalten. All rights reserved.

Gesetzt vom Autor

ISBN 978­3­95947­064­3

Jörg Vogt Verlag
Niederwaldstr. 36
01277 Dresden
Germany

Phone: +49­(0)351­31403921
Telefax: +49­(0)351­31403918
e­mail: info@vogtverlag.de
Internet : www.vogtverlag.de

Technische Universität Dresden

Modeling and Performance Estimation for

Multiprocessor System On Chip Architectures

M. Sc.

Nairuhi Grigoryan

der Fakultät Elektrotechnik und Informationstechnik der Technischen Universität

Dresden

zur Erlangung des akademischen Grades

Doktoringenieur

(Dr.-Ing.)

genehmigte Dissertation

Vorsitzender: Prof. Dr.-Ing. habil. Christian Georg Mayr

Gutachter: Prof. Dr.-Ing. Dr. h.c. Gerhard Fettweis

Prof. Dr.-Ing. Holger Blume

Tag der Einreichung: 28.06.2022

Tag der Verteidigung: 20.12.2022

Nairuhi Grigoryan

Modeling and Performance Estimation for Multiprocessor System On Chip Architectures

Vodafone Chair Mobile Communications Systems

Institut für Nachrichtentechnik

Fakultät Elektrotechnik und Informationstechnik

Technische Universität Dresden

01062 Dresden

Abstract

Nowadays mobile operators face several challenges because of large growth of inter-

net traffic usage, the increase of number of users. There is a need of innovations in

almost every area such as e-health, private businesses, automation, etc. 5G supports

the variety of new services with different requirements for throughput, latency and

reliability. Multicore computing platforms are used to meet the various implemen-

tations while allowing scalability and flexibility in the implementation of the base

stations. The challenge in this regards is the efficient distribution and processing

of signal processing tasks on parallel processors. Multiple processing elements give

opportunity to exploit application parallelism by splitting them into many parallel

tasks and make the parallel execution possible. But unfortunately these methods

also have disadvantages. Moreover, with increasing of the application complexity,

the management and synchronization overhead increases disproportionately, which

limits the increase in performance and system efficiency. The performance of appli-

cation highly depends on the methods used to execute it. The overheads resulting

from synchronization, management and waiting time in a queue sometimes are not

solvable only by choosing the right scheduling algorithm. Therefore another solution

is needed. To cope with this problem, the application granularity reduction using

task clustering was proposed recently and demonstrated impressive performance

improvement. Clustering application before applying scheduling algorithm reduces

the granularity of the application and solves the problem concerning synchronization

and management overheads. There are different clustering algorithms to be chosen,

but they are non deterministic and have high interconnection between tasks from

various clusters. Our motivation for this work was to find a clustering algorithm

which will suit our problem better and will result in better performance. We present

a modification of the CASS-II clustering algorithm which proves to be a satisfactory

solution for our applications. In order to analyze and simulate different graphs,

we also developed a simulation tool, which enables to run different algorithms

for scheduling and clustering very efficiently. It accepts any kind of graphs, and

the results can be later analyzed via easy formed visualization functions. We also

covered another important topic that is energy consumption. Power control is one of

the most important topics in many communication and computation environments.

Heat generation, expensive packing and cooling can be result of high power genera-

tion. Many researchers are engaged in this problem and suggest various solutions.

iii

Energy-delay tradeoff is examined as a method for energy saving. In this work

we investigate dynamic voltage and frequency scaling and suggest a new modified

method called Proportional Task Scaling. In order to change energy consumption,

the frequency and voltage should be changed together. There are different algo-

rithms that suggest to reduce these parameters differently. The greedy static power

management algorithm suggests to reduce frequency and increase the execution

time of the first tasks on processing elements. Most of the algorithms use the slack

value(difference of deadline and scheduling length) to make this change happen.

Our motivation is to reduce even more energy consumption by still meeting the

deadline of the application. So, our suggestion is to change parameters not only

for the first but the whole application by meeting scheduling requirements and

deadline.

iv

Abbreviations

5G fifth generation

CASS-II Clustering And Scheduling System II

CP Critical Path

CRAN Cloud Random Access Network

DAG Directed Acyclic Graph

DFE Data FLow Engine

DLS Dynamic Level Scheduling

DSP Digital Signal Processor

DVFS Dynamic Voltage Frequency Scaling

G-SPM Greedy Static Power Management

HLFET Highest Level First with Estimated Time

PE Processing Element

PHY Physical Layer

RAN Radio Access Network

SDN Sofwtare Defined Network

SDR Software Defined Radio

TDCA Task Duplication based Clustering Algorithm

v

Notations

w task execution time

CC communication cost

f frequency

V voltage

C capacitance

P (f) power consumption

Pd frequency dependent power consumption

Pind frequency independent power consumption

E energy consumption

G graph

sl slack value

p processing element

m makespan of a graph

CP Critical path of a graph

v task

µ(v) execution time of task v

λ(u, v) communication cost between tasks u and v

s(v) s-value of task v

f(v) f-value of task v

b − level(v) b-level of task v

t − level(v) t-level of task v

vii

List of Figures

2.1 Priority levels of a node . 10

2.2 Directed Acyclic graph . 11

2.3 Weighted DAG and Critical Path . 14

2.4 Phases of execution of a single node [CD11] 15

2.5 Deconstruction Framework [Rot+12] 16

2.6 System Overheads [PF08] . 17

2.7 Parallel Region Overheads [PF08] . 17

2.8 Task graph granularity description [LP96] 19

2.9 Task Duplication [He+19] . 23

2.10 Task Duplication: IREA [HZ06] . 24

3.1 Principle of C-RAN data-flow computing system 31

3.2 Principle of hierarchical run time data-flow engine 32

3.3 State diagram illustrating the life cycle of task within DFE 34

3.4 DAG Generation and Resource Allocation 34

3.5 General Concepts . 35

3.6 Clustered on 2PE vs reference graph for 10% overhead 38

3.7 Clustered on 2PE vs reference graph for 50% overhead 38

3.8 Speedup gain of clustered on 2PE vs reference graph for 10% overhead 39

3.9 Speedup gain of clustered on 2PE vs reference graph for 50% overhead 39

3.10 Headroom of clustered on 2PE vs reference graph for 10% overhead . 40

3.11 Headroom of clustered on 2PE vs reference graph for 50% overhead . 40

3.12 Tasks in a graph for different configurations 42

3.13 DFENG Task Graph . 42

3.14 Simulation Results: Clustered vs Not Clustered 43

3.15 Speed Up: Clustered vs Not CLustered 44

4.1 Computing f values of the current nodes [LP96] 49

4.2 Simulation tool illustration . 52

4.3 Random coarse grain application . 57

4.4 Random fine grain application . 57

4.5 Speedup gain of random coarse grain application 58

ix

4.6 Speedup gain of random fine grain application 59

4.7 Haedroom of random coarse grain application 59

4.8 Headroom of random fine grain application 59

4.9 Task Graph Application . 60

4.10 Impact of different clustering algorithms: 1 ant. and 25 users 61

4.11 Impact of different clustering algorithms:1 ant. and 50 users 62

4.12 Speedup gain of modified and original clustering algorithms: 1 ant.

and 25 users . 62

4.13 Headroom of modified and original clustering algorithms: 1 ant. and

25 users . 63

4.14 Impact of architecture homogeneity: 1 Ant. and 25 Users Heteroge-

neous Scheduling . 64

4.15 Impact of architecture homogeneity: 1 Antenna and 50 Users Heteroge-

neous Scheduling . 65

4.16 Impact of architecture homogeneity: 2 Antenna and 25 Users Heteroge-

neous Scheduling . 65

4.17 Homogeneous vs Heterogeneous Architectures: 1Ant., 6Users 66

5.1 Frequency and execution time scaling 70

5.2 Power and frequency dependence P(ind) = 0.1 and P(ind) = 0 for m=2 71

5.3 A DAG sample with three tasks [Mis+03] 72

5.4 Static schedule for the application [Mis+03] 73

5.5 G-SPM Algorithm [Mis+03] . 73

5.6 Execution time and slack value . 74

5.7 Taskflow application . 75

5.8 Scheduled application . 76

5.9 Energy consumption reduction: Proportional Task Scaling(PTS) 76

5.10 Parallel application . 77

5.11 2PE scheduling of parallel application 77

5.12 Simulation results of parallel application 78

5.13 Partially serial application . 79

5.14 2PE scheduling of partially serial application 79

5.15 Simulation results of partially serial application 80

5.16 Parallelism vs energy reduction factor 80

5.17 Energy efficiency for flattened graph: Coarse vs fine grain application(t

=100, P = 3, CC = w10, O = 50%) 81

5.18 Energy efficieny: Coarse grain application - Impact of Granularity Value

(t = 100, P = 3, CC = w/10, O = 50 %) 82

x

5.19 Energy efficieny: Fine grain application - Impact of Granularity Value (t

= 100, P = 3, CC = w10, O = 50%) 83

5.20 Speedup: Coarse grain application - Impact of Granularity Value(t =

100, P = 3, CC = w/10, O = 50%) . 83

5.21 Speedup: Fine grain application - Impact of Granularity Value (t = 100,

P = 3, CC = w10, O = 50%) . 84

5.22 Energy efficiency: Coarse grain flattened application - Impact of over-

head (t = 100, P = 3, CC = w/10, O = 0%, 25%, 50%) 85

5.23 Energy efficiency: Coarse grain application - Impact of overhead (t =

100, P = 3, CC = w/10, O = 0%) . 85

5.24 Energy efficiency: Coarse vs fine grain application - Impact of paral-

lelism (t = 100, P = 8, CC = w10, w/10, O = 50%) 86

5.25 Energy efficiency: Coarse grain application - Impact of parallelism (t =

100, P = 8, CC = w10, O = 50%) . 87

5.26 Energy efficiency: Fine grain application - Impact of parallelism (t =

100, P = 8, CC = w/10, O = 50%) . 87

5.27 LTE graph sample . 88

5.28 Energy consumption for all cases (1Ant, 6User, O = 50%) 88

5.29 Energy consumption improvement factor (1Ant, 6User, O = 50%) . . . 89

xi

List of Tables

3.1 Simulation Platform Parameters . 37

xiii

Contents

Abbreviations v

Notations vii

1 Introduction 1

1.1 Motivation and Problem Statement 1

1.2 Thesis Structure . 3

2 Background 7

2.1 Computational Model for Multiprocessor Signal Processing 7

2.2 Basics of scheduling . 8

2.2.1 Static and dynamic scheduling algorithms 11

2.3 Basics of Clustering . 14

2.3.1 Overhead Analysis . 14

2.3.2 Clustering As One Solution 18

2.3.3 Clustering with and without Task Duplication 21

2.4 Summary . 25

3 Dataflow Framework for Cloud-RAN Signal Processing 27

3.1 Virtualized base stations: State of the art 27

3.1.1 Related Work . 28

3.2 System Concept and DFE Architecture 30

3.3 General Concepts for Experimental Results 33

3.4 Experimental Results . 36

3.4.1 Fundamental Limits . 41

3.4.2 Simulation . 43

3.5 Summary . 45

4 Scalable Signal Processing on Multiprocessor System 47

4.1 The Problem Statement . 47

4.2 The New Clustering Algorithm (modified CASS-II) 48

4.2.1 Complexity Analysis . 50

xv

4.3 Simulation Environment . 52

4.4 Experimental Results . 56

4.5 Graph Scheduling for Heterogeneous Cluster Systems 63

4.6 Summary . 66

5 Energy Consumption Optimization 67

5.1 Background . 67

5.2 Task Scheduling Employing DVFS . 71

5.3 Application Affecting Parameters . 76

5.4 Experimental Results . 88

5.5 Summary . 90

6 Conclusion 91

Bibliography 93

xvi

Introduction 1

1.1 Motivation and Problem Statement

The extreme growth of wireless devices brings with it the need to act respectively.

During the last years, cellular operators faced severe challenges such as increasing

growth of users and also needs of the users. The data that is transferred and received

increases each day. Hardware therefore, should be configured and reconfigured

on the go, but installing new hardware to meet all the new standards is always

expensive. Also, the cellular operators need to install new base stations to cover

the volume of these data. One answer to this growing market was CRAN, which

was first developed in 2009 in China [Che+14]. CRAN is a flexible and adaptable

platform which enable the operators to adapt easily to these growing market. The

operators don’t need to install many new hardware units, as they just need to

make changes in software. We are witnessing that new technologies transfer high

bandwidth applications with high quality of service. With the use of CRANs, the

further problem of parallelization can be resolved. The CRAN approach brings

notable improvements in capital and operational expenditures (CAPEX and OPEX),

as well it makes the operating techniques much easier [KG12]. When implementing

CRAN the need for expensive hardware and also renting real estate decreases. Most

of the actions are transferred into cloud. CRAN can adapt to the frequent change of

network characteristics and utilize the resources more efficiently. Many companies

have developed CRAN implementations. They have different parameters and are

equipped with different usage modules. The problem here is that most of them

provide it as a black box, which has very low level of interference, so the users

cannot change the applications easily on software. They are highly optimized for

some types of platform but are not implementable to others. So, the challenge is also

to provide scalability and efficient use of hardware with changeable implementation

of software. Within the scope of this work, we provide one way to gain scalability

and flexibility. We provide a method for implementing CRAN that allows also the

implementation of different algorithms for task scheduling in CRAN application.

Considering the aformentioned we can also describe the requirements of 5G and

beyond:

1

• Functional split - the partitioning of protocol stack and mapping partitions

often to geographically separated processing unit.

• Temporal and spatial parallel processing to cope with huge computational

requirements.

• Flexibility - diversity of operation and transmission mode.

• Scalability - highly dynamic (time variable) workload.

• Efficiency - efficient use of processing resources.

The growth in number of users and the increase in data volume is aligned with social

development, which in turns brings the need of improvement of other aspects. All

these require innovations for private businesses, automation and even e-health. The

composite scenarios create other challenging problems for mobile network operators,

such as delivering all the necessary data with high speeds and quality. As mentioned

in [Ros+14] it will be very difficult to make all the changes happen using only some

fixed equipment. What is needed is reliable and flexible software (cloud) which

will enable such significant changes in short time. It can be said that flexibility,

openness, scalability and also energy efficiency should be the main criteria for the

new networks. Cloud technologies have already been used in different areas in order

to make the storing and processing easier. This technology is also used nowadays by

mobile operators and enables them to answer to many problems described above.

5G networks make these new improvements real. 5G supports different services and

applications with different throughput, latency and reliability requirements. For this

reason, the implementation of many-core programmable computing platforms is

very preferable. Many-core programmable platforms help solve problems concerning

design and performance of the networks. There is a great variety of models that

help to process modem signals with different characteristics. Many-core platforms

give opportunity to exploit the parallelism of the application by partitioning or

splitting it to parallel tasks and hence enabling simultaneous execution on multiple

cores. By increasing number of the cores in the architecture, maximum possible

parallelism can be met easily. But unfortunately all these methods bring also the

problem of overheads associated with task synchronization and management, and

inherent parallelism which is application specific and usually limited. The scheduling

results of the applications highly depend on the methods used to execute the tasks.

These overheads limit the flexibility and scalability of the applications. One of the

ways to overcome these overheads is applying clustering to the application before

scheduling it into processing elements. Clustering enables solving the problem

2 Chapter 1 Introduction

concerning synchronization and management overheads, and provides better results

after scheduling the application.

Another important aspect is energy consumption. Nowadays modern computing

platforms consume huge amount of energy during execution. The problem with

power consumption has attracted already many research groups to reduce it by

changing some parameters of application or architecture. There are two approaches

that are used to reduce energy consumption powergating as well as dynamic voltage

and frequency scaling [Li16a]. Power gating is switching on/off voltage resources

and is well suited for scenarios with slow workload variation(time and energy

overhead for switching on/off) and DVFS(Dynamic Voltage and Frequency Scaling)

which is well suited for fast workload variation, which is our motivation for choosing

this approach for later investigations. By changing dynamic voltage and frequency of

the application, we can also change the consumed energy. In some cases we can get

better execution results of the application by running it on fully loaded processing

elements, and in other cases we not only can meet the required deadlines but also

gain in energy consumption. It is much better to come up with the solution for joint

minimization of application execution time and energy consumption [Li16a]. For

reduction of power consumption, there are also some other techniques suggested

such as shutting down some processing elements that are not used or reducing power

of partially loaded ones [ZMC03a]. But shutting down and then again turning the

processing elements on needs some time for loading and unloading data, which will

cause more overhead in its turn. So the algorithms that are designed for energy

efficiency and at the same time good performance of the application are better

choice. As it was already mentioned above, dynamic voltage scaling is the technique

that makes possible to change the power of processing elements during run-time,

and which enables to reach energy efficiency without loosing in performance of the

overall application.

1.2 Thesis Structure

Chapter 2

Chapter 2 describes the background information of the computational model for

multiprocessor signal processing, basics of scheduling and clustering algorithms.

The application is described by directed acyclic graphs(DAG), where the tasks are

connected by communication costs and cannot be executed until the predecessor

nodes finished. Before applying scheduling algorithms the tasks are given some

priority levels, which are also described in this chapter. In order to have a better

1.2 Thesis Structure 3

execution, different scheduling algorithms, which include static and dynamic, are

described. For even better results, we apply also clustering algorithms, which

minimize the overheads caused by synchronization and management. The details of

clustering algorithms as well as the description of overheads can be found here.

Chapter 3

The answer for better performance, which includes scalability and efficient use

of hardware resources, predictability and flexibility, is Cloud RAN. The various

implementations of CRAN, as well as use cases are described in chapter 3. Here

also detailed information can be found about dataflow architectures and system

concepts. As it was already described, the application is represented by directed

acyclic graph, all this information about the tasks and connectivity can be found also

in this chapter. Scheduling the application can be done with a special algorithm or

manually. The different results can be found in simulation results section.

Chapter 4

For meeting the growing customer needs, the network operators should design and

implement a network with high reliability, low latency and flexibility. For this reason,

the multi-core architectures are desirable. Implementation of multi-core architecture

is beneficial in terms of short makespan, but it also causes overheads (synchroniza-

tion and management). One of the answers to this issue is applying a clustering

algorithm, and one of the best clustering algorithms is CASS-II, which is described

in chapter 4. In order to satisfy all of the needs for our application, we described

the new modified version of previously mentioned CASS-II algorithm. From simu-

lation results, it can be drawn when it is better to use each algorithm. Scheduling

application also onto heterogeneous architecture is also illustrated here.

Chapter 5

Power and energy management is one of the important aspects in mobile commu-

nications. For many architectures, power control is crucial. So the reduction of

energy consumption and meeting the deadlines are both critical when designing

and executing an application. There are many different ways to manage energy

consumption; one of them is dynamic voltage and frequency scaling, which is de-

scribed in this chapter. Also the greedy static power management algorithm with

some modification is presented in details for reaching best energy efficiency and

scheduling length pair. In the section of simulation results can be seen that after

applying the DVFS method the energy consumption is decreased. However, applying

the new clustering methods additionally increases the energy savings significantly.

All these methods and steps are described in detail in chapter 5.

4 Chapter 1 Introduction

Chapter 6

In chapter 6, the conclusion of the dissertation is given and a summary of the

findings is presented.

1.2 Thesis Structure 5

