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Abstract

This work presents microwave circuits in 65 nm bulk, and 22 nm fully depleted silicon-on-insulator
(FDSOI) complementary metal-oxide-semiconductor (CMOS) technologies. In the first part of the
thesis, the work explains the microwave properties of the two state-of-the-art CMOS technologies
and gives reasons why CMOS is nowadays attractive for microwave circuit design. The second half
shows front-end circuits designed for two research projects.

The first project consists of a quadrature-phase receiver and a high-efficiency transmitter in 65 nm
bulk CMOS for a 24 GHz localization system based on the secondary radar principle. The receiver
circuitry includes a low-noise amplifier (LNA), poly-phase network, and passive down-converter
with post-amplifier. In the LNA, a new method is used, which, despite process tolerances and model
uncertainties, maximizes the gain in a target frequency band. The receiver employs a poly-phase
network realized by a small directional coupler based on lumped elements. New is here that the
coupler omits the termination of the isolated port reducing noise in the receiver. Furthermore, the
system uses frequency doubling of the local oscillator (LO) to enable the operation of a digital phase-
locked loop (PLL) with low phase noise. Therefore, this work introduces the first truly balanced
push-push (PP) frequency doubler, which allows mbesides for high output power, high efficiency,
and high suppression of the fundamental wave at the same time.

The second project aims at a broadband receiver, which covers the complete W-band from 75 to
110 GHz for future 100 Gb/s wireless communication. The receiver utilizes a frequency quadrupler
to multiply an 18.5 GHz LO signal for downconversion of the W-band RF frequencies to 1 to 36 GHz
intermediate frequencies (IF). The quadrupler cascades two truly balanced PP doublers designed in
22 nm FDSOI CMOS. Furthermore, the PP doublers use a more efficient floorplan, which results in
lower chip area consumption.






Zusammenfassung

In dieser Arbeit werden Mikrowellenschaltungen in 65nm Bulk Complementary Metal-Oxide-
Semiconductor (CMOS) und 22nm Fully-Depleted Silicon-on-Insulator (FDSOI) Technologien
vorgestellt. Zunichst werden die Mikrowelleneigenschaften der beiden modernen CMOS Technolo-
gien erldutert und Griinde angegeben, warum CMOS heutzutage fiir das Design von Mikrowellen-
schaltungen attraktiv ist. Zweitens zeigt die Arbeit Front-End Schaltungen, die fiir zwei Forschungs-
projekte entwickelt wurden.

Das erste Projekt besteht aus einem Quadraturphasenempfinger und einem hocheffizienten
Sender in 65 nm Bulk CMOS fiir ein 24 GHz Lokalisierungssystem, das auf dem Sekundérradar-
prinzip basiert. Die Empfiangerschaltung umfasst einen rauscharmen Verstédrker (LNA), ein Mehr-
phasennetz und einen passiven Abwirtswandler mit Nachverstirker. In der LNA wird eine neue
Methode verwendet, die trotz Prozesstoleranzen und Modellunsicherheiten die Verstirkung fiir eine
Zielfrequenz mit wenigen Entwurfsldufen maximiert. Der Empfinger verwendet ein Poly-phasen-
Netzwerk, das aus einem kleinen Koppler besteht, der auf konzentrierten Elementen basiert. Neu ist
hier, dass der Koppler die Terminierung am isolierten Tor wegldsst, um das Rauschen im Empfinger
zu reduzieren. Dariiber hinaus verwendet das System die Frequenzverdopplung des lokalen Oszilla-
tors (LO), um den Betrieb eines digitalen Phasenregelkreises (PLL) mit geringem Phasenrauschen
zu ermoglichen. In dieser Arbeit wird daher der erste echt balancierte Push-Push (PP) Frequen-
zverdoppler vorgestellt, der eine hohe Ausgangsleistung, einen hohen Wirkungsgrad und eine hohe
Unterdriickung der Grundwelle ermoglicht.

Das zweite Projekt zielt auf einen Breitbandempfinger ab, der das gesamte W-Band von 75 bis
100 GHz fiir die zukiinftige drahtlose Kommunikation mit 100 Gb/s abdeckt. Der Empfinger ver-
wendet einen Frequenzquadrupler, um ein 18,5 GHz LO-Signal zu multiplizieren fiir die Abwiirts-
mischung der W-Band RF Frequenzen auf 1 bis 36 GHz Zwischenfrequenzen. Der Quadrupler
kaskadiert zwei echt balancierte PP-Verdoppler, die in 22 nm FDSOI CMOS entworfen sind. Dariiber
hinaus verwenden die PP-Verdoppler einen effizienteren Grundriss, was zu einem geringeren Ver-
brauch an Chipfliche fiihrt.
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Chapter 1
Introduction

1.1 Why are microwaves attractive?

In general, more bandwidth (BW) is available at higher carrier frequencies in the frequency spectrum
[1].

In case of a frequency-modulated continuous wave (FMCW) radar, using triangle modulation the
range resolution increment o is given by

o= C
" 2BW

where c is the speed of light and BW is the modulation bandwidth. With larger bandwidth BW, the
range resolution increment of the radar is decreasing, which in turn improves the accuracy of the
distance measurement.

In case of a communication system the theorem of Shannon-Hartley determines the data-rate f}
and reads

1)

f»=BWlog, (l+%). ?2)
The data-rate increases proportional with the absolute bandwidth. Therefore, the trend towards
higher operating frequencies in radar and communication is unbroken.

However, the limitation in choosing an ever higher operating frequency is the free-space path loss
(FSPL) Lrspr. FSPL is the attenuation along a line-of-sight (LOS) with distance d from transmitter
to receiver and perfect alignment

2
LFSPL = <4ﬁd£> . (3)

With a high carrier frequency, the FSPL can be so high that the specification on the transmitter and
receiver in a foreseen application requires for expensive technology, large chip area, and high design
effort.

The term microwave is a combined word of the micro (greek, mikros: small, short) and electro-
magnetic waves. Conventionally, the free-space wavelength for microwaves is 1 mm to 10 cm, which
corresponds to frequencies between 3 and 300 GHz [2]. Others include wavelengths up to 5 dm also
to microwaves, which extend the frequency range down to 600 MHz. Frequencies, with wavelengths
from 1 to 10 mm, are known as mm-waves and are thus part of microwaves.



2 1 Introduction

Microwave circuit design is challenging since the dimensions of the electronic devices are in the
order of a tenth of a wavelength or more. Therefore, voltages and currents are not constant over the
devices. Along the physical dimensions of the electronic devices, linear elements such as capaci-
tors, inductors, and resistances are distributed. That is why, these electronic devices are referred to
as distributed elements. Distributed elements must be precisely modeled for accurate impedance-
transformations to achieve the desired power or noise matching. Electro-magnetic (EM) simulation
or measurement of known test-structures support the precise modeling of distributed elements. An
example of a distributed element is the transmission line. Besides distributed elements, there are elec-
tronic devices that are much smaller than the wavelength, exhibiting a frequency-dependent behavior
due to parasitic linear elements. These devices are referred to as quasi-lumped elements due to the
parasitic effects. As with the distributed elements, a great deal of effort has to be made to correctly
determine the quasi-lumped elements over the frequency of interest for a successful power or noise
matching. Since matching by reactive and susceptive elements is frequency-dependent, the design
process is about tuning the performance in a specific frequency band. Most importantly, all electronic
devices have to be realized with high precision, such that they follow the modeled behavior. Fortu-
natelly. the challenge of microwave circuit design is significantly relaxed by using technologies with
small dimensions and tight tolerances. This reduces the amount of distributed elements and lowers
parasitic effects with quasi-lumped elements. Furthermore, the low tolerance enables reproducible
manufacturing with high yield.

With the emergence of integrated circuit (IC) technologies, the physical dimensions, as well
as manufacturing tolerances, have been dramatically decreased compared to printed-circuit board
(PCB) technologies. Therefore, rather expensive IC technologies are widely used for microwave
circuits in order to minimize the challenge of microwave circuit design and enable reliable perfor-
mance. IC technologies involve high single-time costs for the production of the mask sets. Low
market-demand applications, which can afford the high technology costs, are mostly of military pur-
poses. Another way to cut down the technology costs per microwave system is mass-production for
high market-demand applications.

The established microwave applications with high market-demand, are the mobile communica-
tions below 3 GHz, the low-noise block (LNB) for private satellite reception in rural areas in Ku-
band [3] and advanced-driver assistance systems (ADAS) radar in 77 GHz band [4]. However, the
industry plans new mass-market applications in the microwave wavelength regime. Examples can
be found in the area of the smart factory initiative [5, 6]. Here, the intent of massive distribution
of sensors and wireless connectivity in manufacturing plants. With the tremendous amount of sen-
sor data and connectivity to vast computation power, manufacturing processes can make their own
decisions forming so-called artificial intelligence. As a result, future factories achieve a higher au-
tomation level, making them more sustainable and competitive. The NaLLoSysPro project [7] uses the
250 MHz wide, and unlicensed Industrial-Medical-Scientific (ISM) band at 24 GHz for a localization
radar sensor. NaLoSysPro is described in this work and is part of the smart factory initiative.

Another field of emerging mass-market microwave applications are wireless communication sys-
tems. Wireless data traffic will grow at an average annual growth rate of 46 % between 2017 and
2022, reaching 77.5 EB per month by this year [8]. The expected growth of wireless data traffic
has motivated the International Telecommunications Union (ITU) to investigate applications in fre-
quency bands above 6 GHz [9]. The fifth generation of wireless communications (5G) foresees peak
data-rates of 20 Gb/s. Therefore, a feature of the SG new radio access technology is the employ-
ment of mm-wave frequency bands ranging up to 52.6 GHz [10]. However, the infrastructure costs
for new wireless communication systems are enormous. For example, the cumulative capex costs
for the 5G network infrastructure in Great Britian for 80 % coverage is forecasted to be higher than
40billion£ [11]. As well as the capex costs the system performance is crucial to attract a large amount
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Fig. 1: Cooperative localization system setup. (a) Arrangement of a localization measurement area
with example object. (b) Difference in form-factor, power consumption, and computation power of
the key-elements in a localization system.

of service subscribers to justify the high effort. That is why the trend to even higher data-rates makes
larger bandwidths inevitable for future wireless communications. The project DataRace investigates
a front-end covering the W-band from 75-to-110 GHz for a demonstrated 100 Gb/s wireless link.

1.1.1 Project NaLoSysPro

Cooperative localization based on FMCW radar [12, 13] is becoming more popular in the industrial
environment, such as smart factories. These include control units that know at all-times, where the
robot and the product are located in three dimensions utilizing an accuracy of sub-decimeter. This
information is used for various functions such as collision detection or screwdriver angle control.
The aim is to lower the scrap reject for more cost-effective, sustainable and competitive manufactur-
ing processes. However, higher local positioning technology distribution for even smaller tools and
applications can only be achieved through low cost, low power consumption, and small form factor.
High accuracy and immunity due to multipath propagation in complex environments, require large
modulation bandwidths, which can be found in the microwave frequency range. The 24 GHz ISM
band with 250 MHz modulation bandwidth, is well-suited for sufficient accuracy.

The project entitled NaLoSysPro (german, NahfeldLokalisierung von Systemen in Produktion-
slinien) aims at a cooperative localization system in manufacturing processes. Cooperative localiza-
tion systems are based on the secondary radar principle. It uses basestations with known absolute
positions, forming the boundaries of the localization area, as shown in Fig. 1a. A localization sys-
tem consists of the three devices transponder, basestation, and a central control unit (Fig. 1b). The
transponders must have the lowest form factor and the lowest power consumption to enable flexible
distribution to an object. For example, a cubic measurement area is equipped in each corner with
a base station. The objects (i.e., an industry robot) to be located are within this measuring range.
Radar transponders are attached to each object so that at least three base stations have a line of sight
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Fig. 2: Highly integrated radar transceiver realized as a CMOS system-on-chip solution with very
small amount of external components for low-cost applications.

connection with the transponder. For the base stations and the central control unit, the form factor is
less or even unimportant, respectively. In contrast, the computing power in the central control unit
must be highest. At the beginning of an absolute distance measurement between one base station and
one transponder, clock synchronization between each two has to be done as described in [14]. Low
data-rate transmission between base station and transponder for the local oscillator (LO) synchro-
nization is done by frequency-modulated signals in the 24 GHz ISM band. Therefore, the transponder
is truly wirelessly operated, apart from the power supply, which makes the system a so-called self-
organizing localization network. After successful synchronization, the distance measurement by the
FMCW principle is executed. Finally, with cross-bearing, the absolute position in three dimensions
of the transponder can be calculated by a central calculation unit, which is connected to all base
stations.

In order to enable the mass-production of the transponder, it must serve a wide range of applica-
tion scenarios. Furthermore, the front-end should have high gain to serve for distances larger than
30 m. The maximum allowed equivalent radiated isotropic power (EIRP) in the 24 GHz ISM band is
20dBm.

Nanometer complementary metal-oxide-semiconductor (CMOS) technologies are now an attrac-
tive choice for microwave applications, due to its sufficient performance and highest possible inte-
gration density among the different semiconductor technologies [15]. Therefore, highly integrated
CMOS system-on-chip solutions are uniquely cost-effective in mass-production, due to the small
number of external components. Furthermore, CMOS operates at considerably lower current con-
sumption than classical microwave semiconductor technologies like Silicon-Germanium or Indium-
Phosphide [16]. In addition to the modulation bandwidth, the phase noise and the linearity of the
modulation ramp are crucial for high accuracy. An empirical expression for phase noise provides the
Leeson’s equation [17] and reads

%uT [ o\
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Higher Q-factors Qy of the resonator tanks lead to a lower phase noise in oscillator circuits, but
only finite Q-factors are possible. Therefore, the minimum phase noise is bounded. For superior
phase noise performance, phased-locked loops (PLL) are used to stabilize analog voltage-controlled
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oscillators (VCO). In [18] it has been shown that varactors in nanometer CMOS are very sensi-
tive to analog control voltages. Thus, voltage fluctuations increase the phase noise of analog VCOs.
All-digital phased-locked loops (ADPPL) avoid analog tuning voltages and external low-frequency
filters compared to analog counterparts. The digital-controlled oscillator (DCO) is tuned by a digital
word and acts as a digital to frequency converter. Overall, the ADPLL approach allows for higher
integration along with high immunity to noise and thanks to the digital interface for frequency
modulation and flexible digital linearization. A fundamental mm-wave ADPLL with linearization
is demonstrated in 65 nm CMOS at 60 GHz with -90 dBc phase noise [19]. However, a divide-by-
32 chain is needed here consuming 28 mW in total, while the output driver power amplifier (PA)
consumes 41 mW. In [20] is shown that the generation of microwave signals at lower frequencies
combined with frequency multipliers results in better phase noise compared to a signal generation
at fundamental frequencies. However, a frequency multiplication desires for many power and area
consuming multipliers as well as an output driver. In [21] quadrature voltage-controlled oscillators
are used for subharmonic mixing of 24 GHz by a 12 GHz LO signal to low intermediate frequency
(IF). It is proposed that this method produces less LO radio-frequency (RF) feedthrough and, due
to this, lower self-mixing effect. [22-24] extends the prior subharmonic approach to a IQ receiver
with a multi-phase (8) VCO. Apart from the relatively large area consumption for the multi-phase
VCO, the VCO cores must all be uniformly loaded by a frequency divider. This sums up to 34 mW
of power consumption for the dividers, although only one is used for operation in a PLL.

The intended highly integrated radar transponder, as depicted in Fig. 2, uses a 12 GHz fundamen-
tal ADPLL for signal generation. The frequency doubler in the receiver part offers truly balanced
operation with output power larger than 5 dBm for downconversion, resulting in a low self-mixing
effect. In the transmit part, a frequency doubler co-optimized with an output stage for output power
larger than 13 dBm, and overall power-added-efficiency of more than 20 % is integrated. This al-
lows for the best trade-off regarding phase noise, power consumption, and area consumption for the
LO signal generation in the 24 GHz ISM-band. Furthermore, the receiver consists of an in-phase
and quadrature-phase (IQ) path enabling the phase measurement in the radar system. As a result,
only the antennas, the reference oscillator, and the DC power supply must be provided externally to
complete the radar transponder, which enables a small form factor as well as low costs. To further
facilitate integration, all circuits should operate from the same 1.2V supply voltage. In this work,
the 24 GHz front-end circuits for the NaLoSysPro project are discussed, which are marked green in
Fig. 2.

1.1.2 Project DataRace

Modern wireless communication systems aim at high data-rates towards 100 Gb/s, to serve the ever
increasing trend of high data traffic. The global mobile data traffic will exceed in year 2023 the
100 EB (Exabyte, Exa=10'%) [25].

The design of such systems follows two different approaches. Either one uses a single channel
(SISO: Single-Input Single-Output) with high bandwidth and operating frequency or combine mul-
tiple parallel channels width moderate bandwidth and operating frequency (MIMO: Multiple-Input
Multiple-Output). A 2x2 MIMO system is implemented in 90 nm CMOS, which achieves 108 Mb/s
at a operating frequency of 5 GHz [26]. The authors address besides their implementation, one issue
of MIMO systems, namely crosstalk mechanisms. Uniquely if the MIMO system is fully integrated
on one chip, the crosstalk can be tremendous. In [27], the authors present a 60 GHz polarization
MIMO system, which uses two orthogonal polarizations in the same frequency channel. The over-
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Fig. 3: DataRace single chip system in package 100 Gb/s wireless communication system.

the-air measurements show up to 24 Gb/s with 16 quadrature-amplitude modulation (QAM) and
10 cm air transmission. A SISO approach using 28 GHz and 32 antenna elements is demonstrated
by [28,29].

The project DataRace (Fully Integrated Dual-Polarized Antenna Array with Ultra-Wideband
Single-Chip CMOS Receiver) investigtes a receiver front-end covering the W-band from 75 to
110 GHz. The envisaged bandwidth of 35 GHz results in a relative bandwidth of

BW 35GHz

bWy = T %scH ~ 38%. %)
Fig. 3 shows the system-in-package (SiP). The SiP approach enables scalable two-dimensional re-
ceiver arrays, which can improve link-budged, whenever it is needed. It comprises of a circular-
polarized antenna (CPA), a polarizer, and a single-chip dual-channel receiver (SCDCR). The polrizer
seperates two orthogonal polarizations and feeds two individual receivers. As a result, DataRace em-
ploys two channels with 35 GHz of bandwidth, to achieve 100 Gb/s of total wireless datarate. The
SCDCR integrates two channels comprising of low-noise amplifier, down-conversion mixer, base-
band broadband amplifier, and analog-to-digital converter (ADC) on a single chip. In order to relax
the integration and scaling of the SiP, the LO signal is fed at a frequency of 18.5 GHz. The expected
losses of the LO distribution network are significantly lower at a quarter of the needed frequency of
74 GHz. That is why, the SCDCR has a frequency quadrupler to multiply the incoming LO signal of
18.5 GHz to 74 GHz. The resulting 74 GHz LO-signal downconverts the front-end bandwidth to 1-
36 GHz IF, which is beneficial, due to the presence of 1/f-noise below 1 GHz. A baseband broadband
amplifier amplifies the IF signal, such that the ADCs noise figure is not perishing the reception. The
ADC is clocked as well by the 74 GHz signal, which further eases scaling and integration because
no additional clocking signal has to be distributed within the receiver array.

Amplifiers are key building blocks for a communication system. Fig. 4a shows a simplified equiv-
alent circuit for a transistor in common source configuration. The input behaves like a series R-C
low-pass circuit, while the output behaves like a parallel R-C low-pass circuit. In broadband circuit
design, the bandwidth is mainly limited by the low-pass behaviour of the transistors, which will not
allow for bandwidths in the microwave range. For microwave frequencies, the parasitic R-C ele-
ments of the transistors are large and wavelengths are in the range of the electrical distances between
the circuits, causing impedance mismatching and reflections, lowering the signal being present at
the load. For maximum power transfer between the sources and loads, impedance transformations
for conjugated matching are necessary. Fig.4b depicts the concept for conjugated matching of a
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Fig. 4: nMOS microwave amplifier. (a) Simplified equivalent circuit of a nMOS in common source
configuration. (b) Amplifier circuit with conjugate input and output matching to maximize power
transfer.

microwave amplifier. A matching network transforms Z;, to Z; and Z,, to Z;. Z; and Z; are not
necessarily a real impedance such as 50 Ohm and can be as well an imaginary impedance as in
matching between amplifier stages. The simplest approach of a matching network is the L-network
comprising two lumped elements being a reactance and a susceptance [2]. Both the reactance and
susceptance can be either negative or positive, thus forming a second-order low- or high-pass filter.
However, additional requirements on the matching networks narrow down the flexibility for design.
For example one requirement is, that the decoupling of a DC supply realized by a bias-tee diplexer,
which can be a reused L-network. Another requirement is a high-pass behavior since it can damp
the higher intrinsic transistor gain at lower frequencies, which improves the stability of a microwave
amplifier. The L-netowrk between the source impedance and load impedance forms a higher-order
band-pass. The amplifier is tuned to a pass-band frequency, where the signal power is transferred
from the source to the load. With the described L-network the matching is valid for a narrow band-
width, which is typically around 10 % [30]. Thus, for this project higher order matching networks
such as a cascade of L-networks or transformers to realize the bandwidth of 38 % are investigated.
Particularly challenging is here, that the transistors must offer enough intrinsic gain to overcome the
potential losses of a cascade L-network.

The project DataRace employs a 22 nm fully depleted silicon-on-insulator (FDSOI) CMOS tech-
nology, which has nMOS transistors with ft/fmax of 350/370 GHz [31]. It has sufficient performance
in mm-wave frequency bands and has the highest possible integration density among all semicon-
ductor, since it is a CMOS process. That means, the whole RF and IF analog front-end circuit can be
integrated on a single chip, which lowers the overall integration costs. Furthermore, the technology
offers two ultra-thick copper layers in the back-end of line (BEoL) (ca. 3 um), which is promising
for high-Q passives for matching networks with low losses. Finally, the SiP integrates by a polymer-
metal technology the front-end chip with the polarizer and the circular polarized antenna.

1.2 Outline of this work

This work is organized as follows. Chapter 2 discusses the NaLoSysPro and DataRace system design.
Based on link-budget calculations the performance requirement for the circuit blocks are provided
Chapter 3 focusses on the CMOS technology details for the 65 nm bulk and 22 nm FDSOI process.
Chapter 4 covers the 24 GHz front-end circuits developed for the NaLoSysPro project. It comprises
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the entire receiver chain, transmitter, and LO doubler. The next chapter covers the LO quadrupler
is described in detail and how the circuit is optimized in the context of the DataRace project. The
concluding remarks are given in Chapter 6.



